

October 24-27, 2010

THE MOSCONE CENTER

American College of Osteopathic Pediatricians 209 Dickens Road • Richmond, VA 23230-2005 (804) 565-6333 • bob@acopeds.org • www.acopeds.org

TYM

Photo courtesy of Lewis Sommer, San Francisco Convention & Visitor's Bureau

SAN FRANCISCO

The American College of Osteopathic Pediatricians Would Like to Thank Our

2010 SUPPORTERS & SPONSORS

PLATINUM SPONSOR

GOLD SPONSOR

COMMERCIAL SUPPORTERS Merck & Company Sonifi-Pasteur

CARING FOR AMERICA'S CHILDREN

Dear Fellow Osteopathic Pediatricians,

Welcome to beautiful San Francisco, California and the American College of Osteopathic Pediatricians Track of the AOA 115th Annual Convention and Scientific Seminar.

The theme of this year's conference is Prevention. The CME committee has lined up an amazing group of speakers, some of whom you know already and others that we hope you will enjoy getting to know. The topics covered are wide ranging and central to ACOP's theme of Prevention. They include vision screening, sexual exploitation, advocacy for children with special needs, a review of influenza and MRSA, pediatric migraines and seizures, and a hands-on workshop on craniosacral interventions in pediatrics. The meeting also includes a Neonatal/Perinatal day with some wonderful and timely topics given by nationally renowned speakers in the fields of bilirubin metabolism, fetal diagnosis, fetal therepy and the use of nitric oxide in the preterm infant. The conference concludes with a 2 hour lecture on the use and implementation of the electronic medical record.

As always, the American College of Osteopathic Pediatricians is committed to teach, inspire and train students and residents. We have specific sessions for students and residents as well as a number of committee meetings. All conference attendees are welcome to attend these sessions.

The location offers a number of exciting opportunities outside of the conference. From exploring historic Fisherman's Wharf and Pier 39, to hiking up to see the gorgeous views by Coit Tower, to taking educational walks to explore the murals in the Mission District, to riding a cable car through the windy city streets, there is no lack for extracurricular activity. San Francisco is also known for its amazing cuisine – you need not go far to have one of the best meals of your life. We are in the process of planning a wine tasting on the evening of Monday, October 25th. Details will be forthcoming on the ACOP website.

We look forward to seeing you in wonderful San Francisco and hope that you have a magnificent time expanding your pediatric repertoire and engaging in meaningful discussions with your colleagues.

Edwin Spitzmiller, DO, FACOP, FACOP, FAAP – *Program Chair* Tami Hendriksz, DO, FACOP, FAAP – *Program Co-Chair* Neil S. Levy, DO, MBA, FACOP – *Director of CME Programs*

> 2209 DICKENS ROAD, RICHMOND, VA 23230-2005 PHONE 877.231.ACOP • FAX 804.282.0090 WWW.ACOPeds.ORG

BOARD OF TRUSTEES

EXECUTIVE COMMITTEE

Margaret A. Orcutt Tuddenham, DO, FAAO, FACEP, FACOP – *PRESIDENT* James E. Foy, DO, FACOP – *VICE PRESIDENT* Scott S. Cyrus, DO, FACOP – *SECRETARY-TREASURER* Robert W. Hostoffer, Jr., DO, FACOP – *IMMEDIATE PAST PRESIDENT* Stewart A. Hinckley – *EXECUTIVE DIRECTOR*

TRUSTEES

Michael G. Hunt, DO, FACOP, FAAP James Kirk, DO, FACOP Nancy Monaghan Beery, DO, FACOP, FAAP Edward E. Packer, DO, FACOP Judith Thierry, CAPT, DO, FACOP Nathanael S. Brady, DO (Fellowship Member) David A. Swender, DO (Resident Member) Candace Prince (Student Member) Ben Abo (Student Member)

DIRECTOR OF CME PROGRAM

Neil S. Levy, DO, MBA, FACOP

FALL 2010 PROGRAM CHAIRS

Edwin Spitzmiller, DO, FACOP – *Program Chair* Tami Hendriksz, DO, FACOP, FAAP – *Program Co-Chair* Holly Payne, DO, MS, FACOP – *Program Co-Chair, Sunday Perinatal/Neonatal Program*

TABLE OF CONTENTS

CLICK ON

Page Numbers to Navigate Osteopathic Pledge of Commitment	5
Faculty	
Faculty Disclosures	7
Board of Trustees, Staff & CME Committee Member Disclosures	8
Program at a Glance	9

SUNDAY, OCTOBER 24, 2010

PERINATAL / NEONATAL

Unusual and Challenging Fetal Abnormalities:	
Prenatal Ultrasound Evaluation - Harris J. Finberg, MD	12
Nitric Oxide Use in Neonates - James Kirk, DO, FACOP	13
Neonatal Dermatology - Melinda F. Greenfield, DO	50
Fetal Therapy: Here and Now - aka What's Crazy, Sexy and Cool - Garrett Lam, MD	83
Newborn Jaundice: Alerts, Evidence and Practice - Vinod K. Bhutani, MD	84
Apnea and Bradycardia - Shannon Jenkins, DO	95
Assessing Limits of Viability - Carl Backes, DO, FACOP, FAAP	114

MONDAY, OCTOBER 25, 2010

Vision Screening Update and to Refer or Treat? - Kenneth P. Adams, DO, JD	154
Sexual Exploitation – What It Is and What It Isn't - Marty Klein, PhD	155
What is a Meaningful Use of Electronic Information as Directed by the	
American Recovery and Investment Act? - Michael G. Hunt, DO, FACOP, FAAP	156
State of the College - Margaret Orcutt Tuddenham, DO, FACEP, FACOP	157
Discharge Planning for NICU Patients - Ronald S. Cohen, MD	158
Medical Information: Is it Really Portable? - Michael G. Hunt, DO, FACOP, FAAP	180

TABLE OF CONTENTS

CLICK ON

Page Numbers to Navigate

TUESDAY, OCTOBER 26, 2010

Pediatric Office Dermatology - Melinda F. Greenfield, DO	. 182
Prep for Court/Depositions - Mary Angel Meyer, JD	. 224
Special Needs Advocation - Barbara L. Baldwin, DO, FACOP	239
Gastric Banding as Treatment for Adolescent Obesity - Alison A. Clarey, DO	240
A Case-Based Review of Influenza - James H. Brien, DO, FAAP	. 241
A Case-Based Review of MRSA - James H. Brien, DO, FAAP	269
Optimizing Revenue in Your Pediatric Practice - Mary Jean Sage, CMA-AC	308

WEDNESDAY, OCTOBER 27, 2010

Craniosacral Interventions in Pediatrics - Susan Cislo, DO	333
Craniosacral Interventions in Pediatrics - Workshop - Susan Cislo, DO	334
The Comprehensive Diagnosis and Treatment of Pediatric Migraine - Marc DiSabella, DO	335
Pediatric Spells: Not All That Moves Is a Seizure - Marc DiSabella, DO	341
Clinical Management of Toxic Substance Exposure in Children - Michael D. Reed, PharmD, FCCP, FCP	346
Pediatric Arrhythmia - the Good, the Bad and the Ugly - Alok Bose, MD	347
Chest Pain and Syncope - When to Worry - Alok Bose, MD	348
Abstracts	349

OSTEOPATHIC PLEDGE OF COMMITMENT

As members of the osteopathic medical profession, in an effort to instill loyalty and strengthen the profession, we recall the tenets on which this profession is founded — the dynamic interaction of mind, body and spirit; the body's ability to heal itself; the primary role of the musculo-skeletal system; and preventive medicine as the key to maintain health. We recognize the work our predecessors have accomplished in building the profession, and we commit ourselves to continuing that work.

I pledge to:

Provide compassionate, quality care to my patients;

Partner with them to promote health;

Display integrity and professionalism throughout my career;

Advance the philosophy, practice and science of osteopathic medicine;

Continue life-long learning;

Support my profession with loyalty in action, word and deed; and

Live by each day as an example of what an osteopathic physician should be.

2010 AOA/ACOP PEDIATRIC TRACK

-FACULTY-

Kenneth P. Adams, DO, JD

Ophthalmologist Family Eye Care and Children's Eye Center of New Mexico Albuquerque, NM

Carl Backes, DO, FACOP, FAAP Pediatrician Kiddie West Pediatrics Center Columbus, OH

Barbara L. Baldwin, DO, FACOP Pediatrician Princeton Pediatrics Orlando, FL

Vinod K. Bhutani, MD Professor of Pediatrics & Neonatology Lucile Packard Children's Hospital Stanford, CA

Alok Bose, MD Pediatric Cardiologist Pediatric Cardiology Medical Group Oakland, CA

James H. Brien, DO, FAAP Associate Professor of Pediatrics Texas A&M Health Science Center College of Medicine Scott and White Main Hospital Temple, TX

Susan Cislo, DO Assistant Professor Touro University College of Osteopathic Medicine Bay Area Osteopathic Sacramento, CA

Alison A. Clarey, DO Surgeon Dayton Bariatric Center Dayton, OH

Ronald S. Cohen, MD Director, Intermediate & Special Care Nurseries Packard Children's Hospital Sanford, CA

Marc DiSabella, DO Pediatric/Adolescent Psychiatrist Washington, DC

Harris J. Finberg, MD Assistant Professor of Radiology Mayo Medical School Director, Diagnostic Ultrasound Phoenix Perinatal Associates Phoenix, AZ

Melinda F. Greenfield, DO

Dermatologist Albany Dermatology Clinic, PA Albany, GA 31707

Michael G. Hunt, DO, FACOP, FAAP Ambulatory Physician Sisters of Mercy Health System

St. Lous, MO Shannon Jenkins, DO Medical Director

Newborn Intensive Care Eastern Idaho Regional Medical Center Idaho Falls, ID

James Kirk, DO, FACOP Neonatologist Wolfson Children's Hospital Jacksonville, FL

Marty Klein, PhD Licensed Marriage & Family Therapist and Certified Sex Therapist Palo Alto, CA

Garrett Lam Director of Fetal Therapy Phoenix Perinatal Associates Phoenix, AZ

Mary Angel Meyer, JD Medical Malpractice Defense & Risk Management Houston, TX

Michael D. Reed, PharmD, FCCP, FCP Director, Rebecca D. Considine Research Institute Children's Hospital Medical Center of Akron Akron, OH

Margaret A. Orcutt Tuddenham, DO, FACEP, FACOP Director of Urgent Care Medicine Cincinnati Children's Hospital Medical Center

Cincinnati, OH

Mary Jean Sage, CMA-AC Certified Medical Assistant

The Sage Associates Pismo Beach, CA

FACULTY DISCLOSURES

- 1 No Relationship with Commercial Supporters
- 2 Employment
- 3 Management Position
- 4 Independent Contractor (Including Contracted Research)
- 5 Consulting
- 6 Speaking and Teaching

- 7 Membership on Advisory Committees or Review Panels
- 8 Board Membership
- 9 Other Activities
- 10 Author did not provide disclosure information prior to printing. Disclosure will occur prior to the presentation.

Prior to the start of the meeting all identified conflicts of interest will be resolved as per the ACOP Resolution Policy.

Prior to the start of their presentations, speakers who did not provide disclosure information prior to the printing of this syllabus, will make a disclosure prior to their presentation.

Michael G. Hunt, DO, FACOP, FAAP - 1 Kenneth P. Adams, DO, JD 6 – Alcon Shannon Jenkins, DO - 1 Carl Backes, DO, FACOP, FAAP - 1 James Kirk, DO, FACOP - 1 Barbara L. Baldwin, DO, FACOP - 1 Marty Klein, PhD - 1 Vinod K. Bhutani, MD - 1 Garrett Lam - 1 Alok Bose, MD - 1 Mary Angel Meyer, JD - 1 James H. Brien, DO, FAAP 6 – Novartis Michael D. Reed, PharmD, FCCP, FCP Susan Cislo, DO 2 – Touro University Margaret A. Orcutt Tuddenham, DO, FACEP, FACOP Alison A. Clarey, DO - 1 Holly Payne, DO, MS, FACOP - 1 Ronald S. Cohen, MD - 1 Michael D. Reed, PharmD, FCCP, FCP - 1 Marc DiSabella, DO - 1 Mary Jean Sage, CMA-AC Harris J. Finberg, MD - 1 Edwin Spitzmiller, DO, FACOP - 1 James E. Foy, DO, FACOP - 1 Judith Thierry, DO, FACOP - 1 Melinda F. Greenfield, DO 6 – Medicis

BOARD OF TRUSTEES, STAFF & CME COMMITTEE MEMBER DISCLOSURES

- 1 No Relationship with Commercial Supporters
- 2 Employment
- 3 Management Position
- 4 Independent Contractor (Including Contracted Research)
- 5 Consulting
- 6 Speaking and Teaching

- 7 Membership on Advisory Committees or Review Panels
- 8 Board Membership
- 9 Other Activities
- 10 Author did not provide disclosure information prior to printing. Disclosure will occur prior to the presentation.

Prior to the start of the meeting all identified conflicts of interest will be resolved as per the ACOP Resolution Policy.

ACOP CME Committee Disclosures

Neil S. Levy, DO, MBA, FACOP - Director CME Program - 1 Edwin Spitzmiller, DO, FACOP - Program Chair - 1 Tami Hendriksz, DO, FACOP - Program Co-Chair - 1 Barbara Lynn Baldwin, DO, FACOP - 1 Robert J. Beckman, DO, PC, FACOP - 1 Michelle Bez, DO, FACOP - 1 Cyril Blavo, DO, MPH, FACOP - 1 Abraham Bressler, DO, FACOP - 1 Ali Carine, DO, FACOP - 1 Scott S. Cyrus, DO, FACOP - 1 Christina M. DaSilva – 1 Chandra Delorenzo, DO, FACOP - 1 Marta Diaz-Pupek, DO, FACOP, FAAP - 1 Dana Ewles, DO, BS, FACOP - 1 James E. Foy, DO, FACOP - 1 Stuart J. Friedman, DO, FACOP, FAAP - 1 Eli A. Gasinu - 1 Lee J. Herskowitiz, DO, FACOP - 1 Robert W. Hostoffer, Jr., DO, FACOP - 1 Eileen Hug, DO, FAAP, FACOP - 1 Michael G. Hunt, DO, FACOP, FAAP - 1 Barbara D. Ianni, DO, FACOP, FAAP - 1 Tabitha Jones, DO, MPH - 1 Linda N. Jones-Hicks, DO, FAAP, FACOP - 1 Jacqueline M. Kaari, DO, FACOP - 1 James Kirk, DO, FACOP - 1 Whitney L. Latham, DO - 1

Connie Jo McCarroll, DO, FACOP – 1 Nancy Monaghan-Beery, DO, FACOP, FAAP – 1 Edward E. Packer, DO, FACOP – 1 Holly Payne, DO, MS, FACOP – 1 Howard J. Sadinsky, DO, FACOP – 1 Judith Thierry, CAPT, DO, FACOP Paul A. Tomcykoski, DO, FACOP – 1 Margaret A. Orcutt Tuddenham, DO, FAAP, FACEP, FACOP – 1

ACOP Board of Trustees Disclosures

Margaret A. Orcutt Tuddenham, DO, FAAP, FACEP, FACOP – President – 1 James E. Foy, DO, FACOP – Vice President – 1 Scott S. Cyrus, DO, FACOP – Secretary/Treasurer – 1 Robert W. Hostoffer, Jr., DO, FACOP – Immediate Past President – 1 Michael G. Hunt, DO, FACOP, FAAP – 1 James Kirk, DO, FACOP – 1 Nancy Monaghan Beery, DO, FACOP, FAAP – 1 Edward E. Packer, DO, FACOP – 1 Judith Thierry, CAPT, DO, FACOP – 1 Nathanael S. Brady, DO – 1 David A. Swender, DO – 1 Ben Abo. MS4 - 1

ACOP Staff Members

Stewart A. Hinckley – 1 Bob Specht – 1

2010 AOA/ACOP PEDIATRIC TRACK SCIENTIFIC PROGRAM

SUNDAY, OCTOBER 24, 2010

PERINATAL / NEONATAL

Moderator – Holly Payne, DO, MS, FACOP Co-Moderator (BOT Member) – James Kirk, DO, FACOP

7:00 am – 5:00 pm	AOA Registration
8:00 am – 9:00 am	Unusual and Challenging Fetal Abnormalities: Prenatal Ultrasound Evaluation Harris J. Finberg, MD
9:00 am – 10:00 am	Nitric Oxide Use in Neonates James Kirk, DO, FACOP
10:00 am - 10:30 am	Break
10:30 am - 11:00 am	Neonatal Dermatology
	Melinda F. Greenfield, DO
11:30 am – 12:30 pm	Fetal Therapy: Here and Now - aka What's Crazy, Sexy and Cool Garrett Lam, MD
12:30 pm – 2:00 pm	Lunch On Own
2:00 pm – 3:00 pm	Newborn Jaundice:
2.00 pm = 0.00 pm	Alerts, Evidence and Practice
	Vinod K. Bhutani, MD
3:00 pm – 4:00 pm	Apnea and Bradycardia
	Shannon Jenkins, DO
4:00 pm – 5:00 pm	Assessing Limits of Viability
	Carl Backes, DO, FACOP, FAAP
5:00 pm – 8:00 pm	ACOP Board of Trustees Meeting

MONDAY, OCTOBER 25, 2010

Moderator – Edwin Spitzmiller, DO, FACOP

Co-Moderator (BOT Member) – James E. Foy, DO, FACOP
AOA Registration
AOA Opening Session/Keynote Address
Vision Screening Update and to Refer or Treat?
Kenneth P. Adams, DO, JD
Sexual Exploitation – What It Is and What It Isn't Marty Klein, PhD
Alumni Lunches
What is a Meaningful Use of Electronic Information as Directed by the American Recovery and Investment Act? Michael G. Hunt, DO, FACOP, FAAP
State of the College Margaret Orcutt Tuddenham, DO, FACEP, FACOP
Break
Discharge Planning for NICU Patients Ronald S. Cohen, MD

MONDAY, OCTOBER 25, 2010 (CONTINUED)

4:00 pm – 5:00 pm	Medical Information: Is it Really Portable?
	Michael G. Hunt, DO, FACOP, FAAP
5:00 pm – 7:00 pm	CME Committee, Pediatric Program Director and Vaccine Committee Meetings

TUESDAY, OCTOBER 26, 2010

Moderator - Judith Thierry, DO

8:00 am – 9:00 am	Pediatric Office Dermatology Melinda F. Greenfield, DO
8:00 am - 10:00 am	AOA Town Hall Meeting
9:00 am – 9:45 am	Prep for Court/Depositions
	Mary Angel Meyer, JD
9:45 am – 10:15 am	Break
10:15 am – 11:00 am	Special Needs Advocation Barbara L. Baldwin, DO, FACOP
11:00 am – 12:00 n	Gastric Banding as Treatment for Adolescent Obesity Alison A. Clarey, DO
12:00 n – 1:00 pm	Lunch On Own/Posters and Exhibits
1:00 pm – 2.00 pm	A Case-Based Review of Influenza
	James H. Brien, DO, FAAP
2:00 pm – 3:00 pm	A Case-Based Review of MRSA
	James H. Brien, DO, FAAP
3:00 pm – 4:00 pm	Optimizing Revenue in Your Pediatric Practice
	Mary Jean Sage, CMA-AC
4:00 pm – 5:30 pm	CME Committee, Pediatric Education Leadership Committee, eJournal
7:00 pm – 10:00 pm	AOA/AAOA President's Reception

WEDNESDAY, OCTOBER 27, 2010

	Moderator – Margaret Orcutt Tuddenham, DO, FACEP, FACOP
8:00 am – 9:00 am	Craniosacral Interventions in Pediatrics
	Susan Cislo, DO
9:00 am – 10:00 am	Craniosacral Interventions in Pediatrics - Workshop
	Susan Cislo, DO
10:00 am - 10:30 am	Break
10:30 am – 11:30 am	The Comprehensive Diagnosis and Treatment of Pediatric Migraine
	Marc DiSabella, DO
11:30 am – 12:30 pm	Pediatric Spells: Not All That Moves Is a Seizure
	Marc DiSabella, DO
12:30 pm – 2:00 pm	Lunch
2:00 pm – 3:00 pm	Clinical Management of Toxic Substance Exposure in Children Michael D. Reed, PharmD, FCCP, FCP
3:00 pm – 4:00 pm	Pediatric Arrhythmia - the Good, the Bad and the Ugly Alok Bose, MD
4:00 pm - 5:00 pm	Chest Pain and Syncope - When to Worry
	Alok Bose, MD
6:00 pm – 8:00 pm	AOA Dinner Seminar
	(Must sign in for extra CME)

SUNDAY, OCTOBER 24, 2010

PERINATAL / NEONATAL

Moderator – Holly Payne, DO, MS, FACOP Co-Moderator (BOT Member) – James Kirk, DO, FACOP

7:00 am – 5:00 pm	AOA Registration
8:00 am – 9:00 am	Unusual and Challenging Fetal Abnormalities: Prenatal Ultrasound Evaluation Harris J. Finberg, MD
9:00 am – 10:00 am	Nitric Oxide Use in Neonates James Kirk, DO, FACOP
10:00 am – 10:30 am	Break
10:30 am – 11:00 am	Neonatal Dermatology Melinda F. Greenfield, DO
11:30 am – 12:30 pm	Fetal Therapy: Here and Now - aka What's Crazy, Sexy and Cool Garrett Lam, MD
12:30 pm – 2:00 pm	Lunch On Own
2:00 pm – 3:00 pm	Newborn Jaundice: Alerts, Evidence and Practice Vinod K. Bhutani, MD
3:00 pm – 4:00 pm	Apnea and Bradycardia Shannon Jenkins, DO
4:00 pm – 5:00 pm	Assessing Limits of Viability Carl Backes, DO, FACOP, FAAP
5:00 pm – 8:00 pm	ACOP Board of Trustees Meeting

SUNDAY, OCTOBER 24, 2010

PERINATAL / NEONATAL

Moderator – Holly Payne, DO, MS, FACOP Co-Moderator (BOT Member) – James Kirk, DO, FACOP

8:00 am - 9:00 am

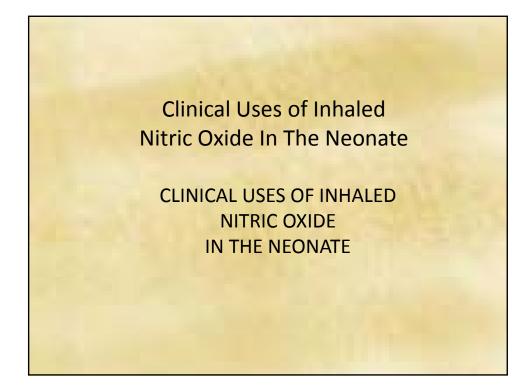
Unusual and Challenging Fetal Abnormalities: Prenatal Ultrasound Evaluation

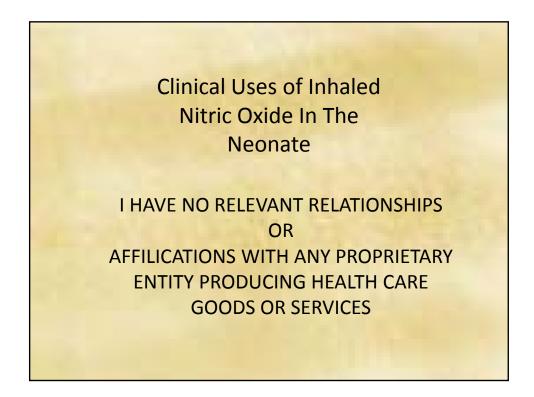
Harris J. Finberg, MD

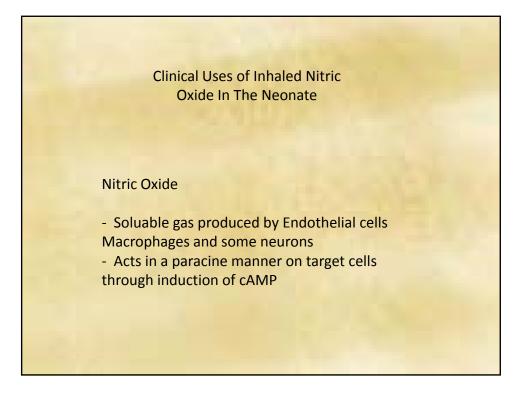
Objective: Upon completion of this lecture, the participant will be able to demonstrate how a careful analysis of an abnormal fetal sonogram may identify a "tell-tale detail" that will indicate a unique diagnosis or a sharply limited differential diagnosis, and explain how sonographic diagnosis of fetal malformations helps direct and improve prenatal and neonatal management and prognosis.

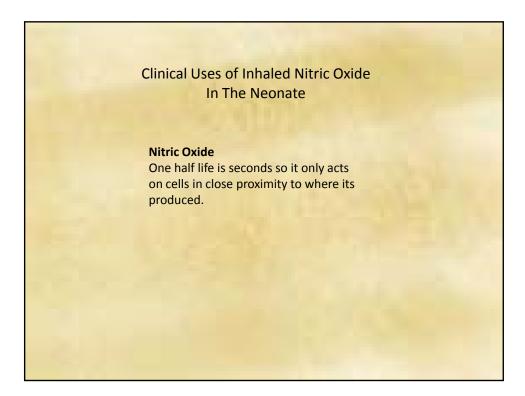
SUNDAY, OCTOBER 26, 2008

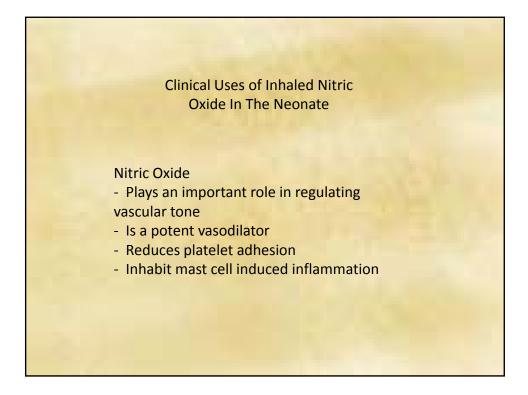
PERINATAL / NEONATAL

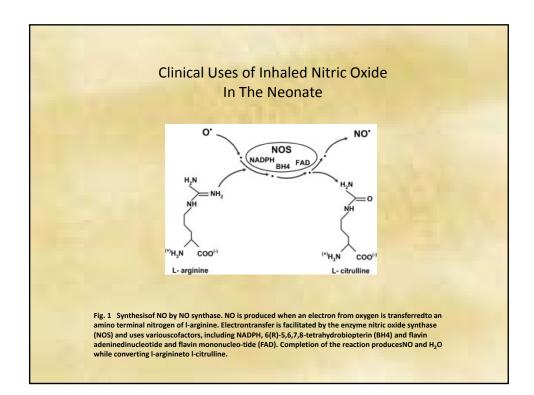

Moderator – Holly Payne, DO, MS, FACOP Co-Moderator (BOT Member) – James Kirk, DO, FACOP

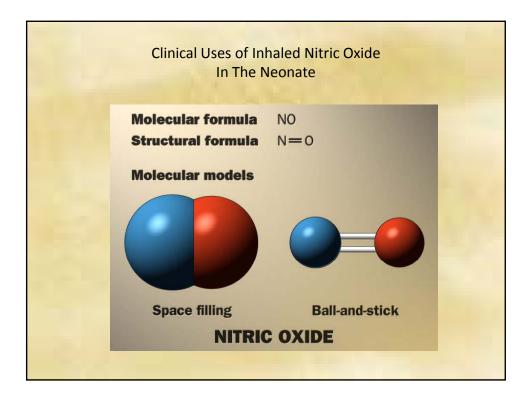

9:00 am - 10:00 am

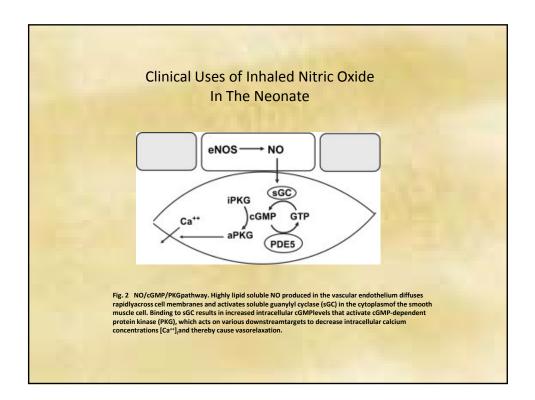

Nitric Oxide Use in Neonates

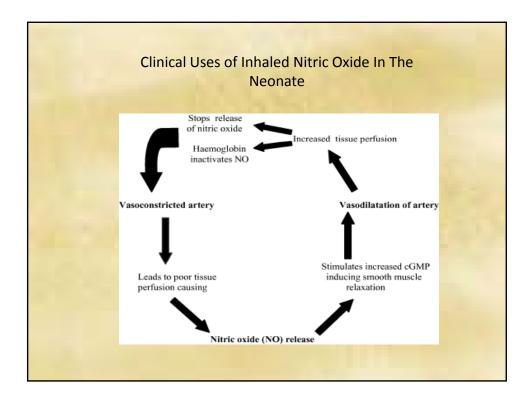

James Kirk, DO, FACOP

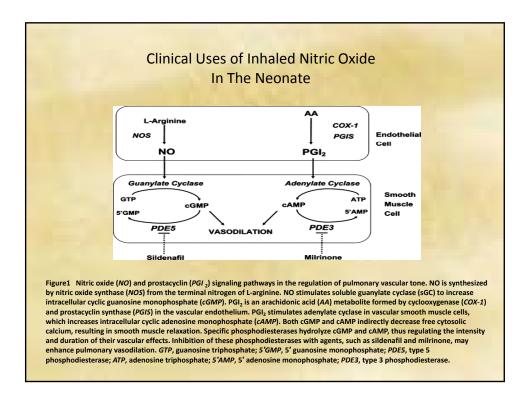

Objective: Upon completion of this lecture, the participant will be able to review the physiology of nitric oxide and its role in regulating pulmonary blood flow, discuss the established uses of inhaled nitric oxide in term infants with hypoxic respiratory failure, and discuss the potential uses of inhaled nitric oxide in preterm infants for the prevention of chronic lung disease.

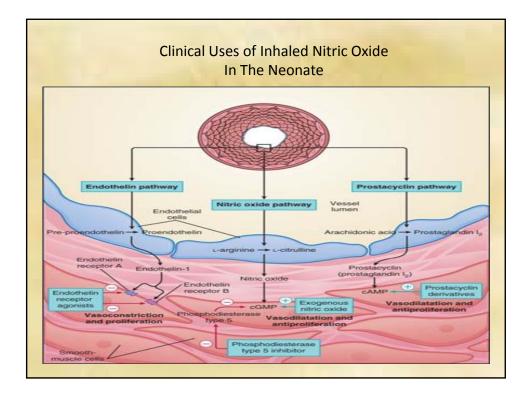


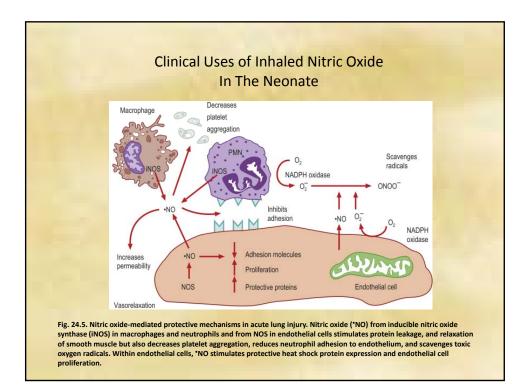


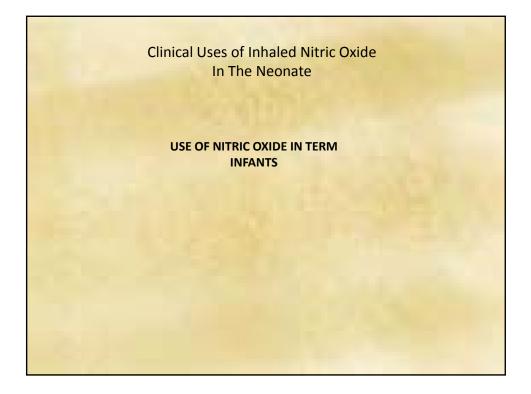


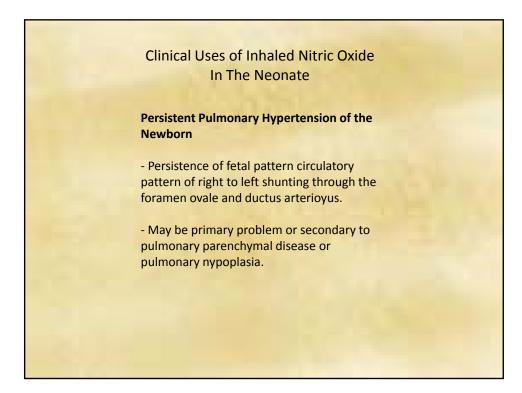


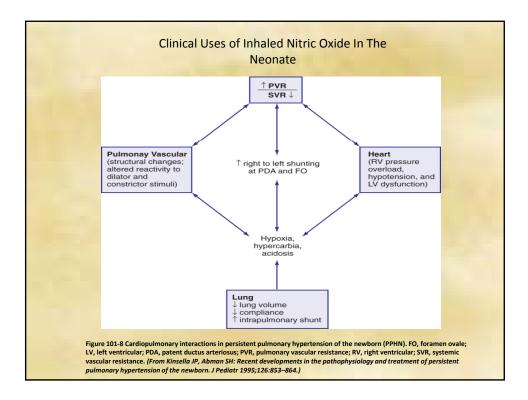


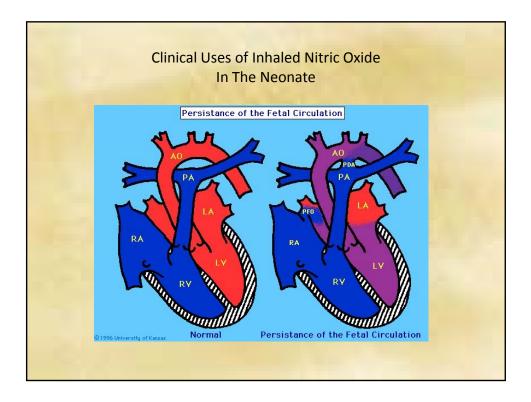


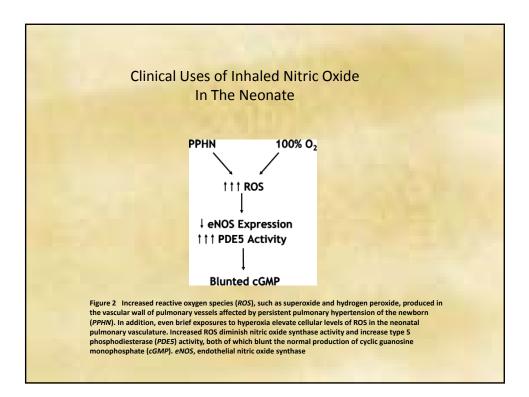


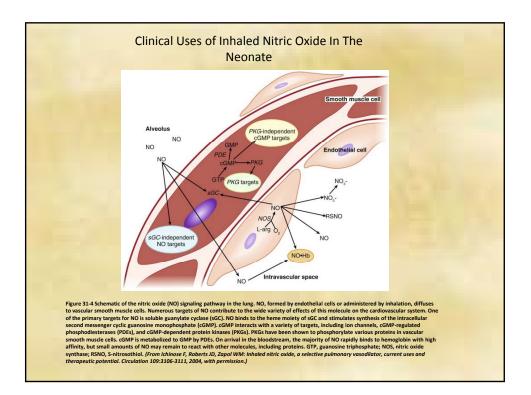


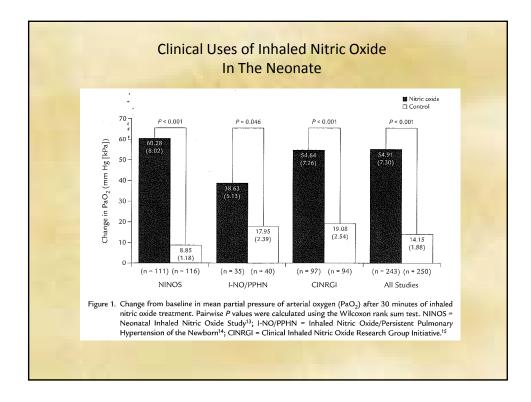


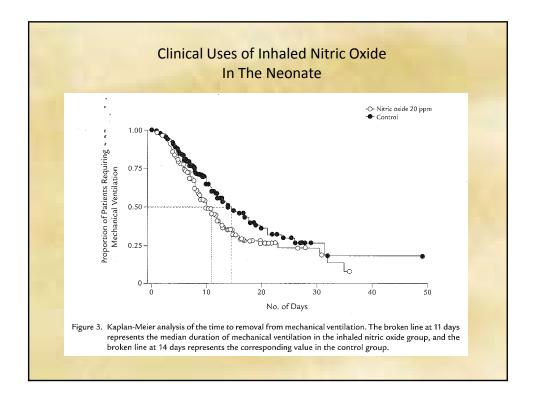


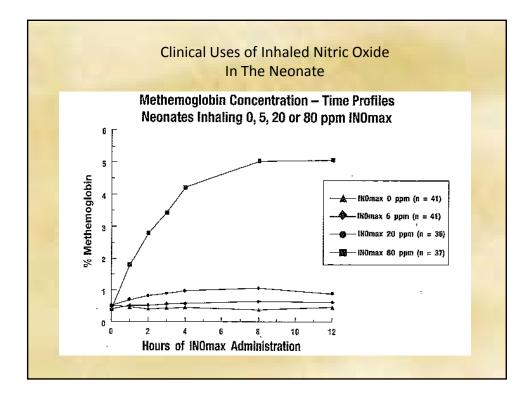


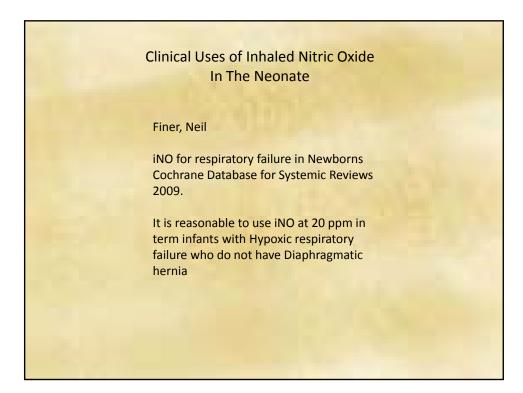


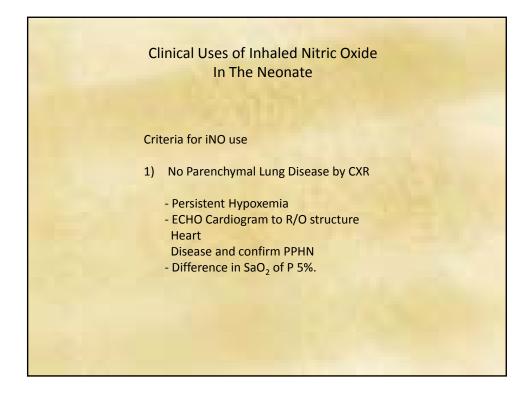


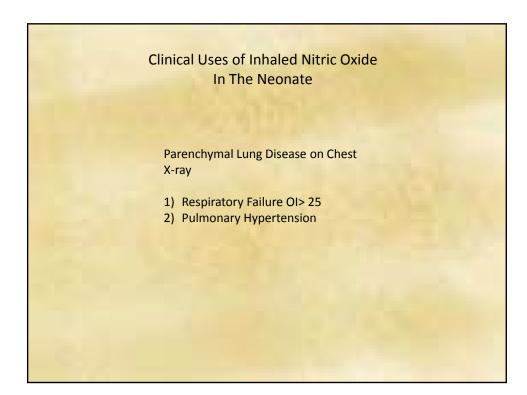


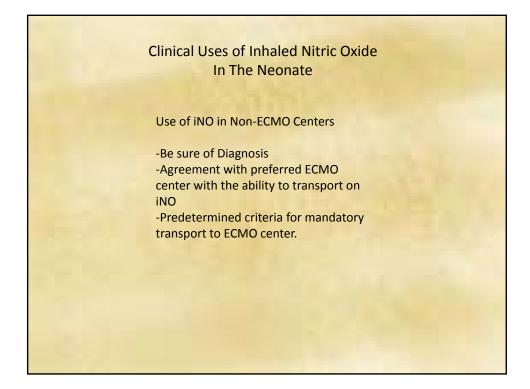


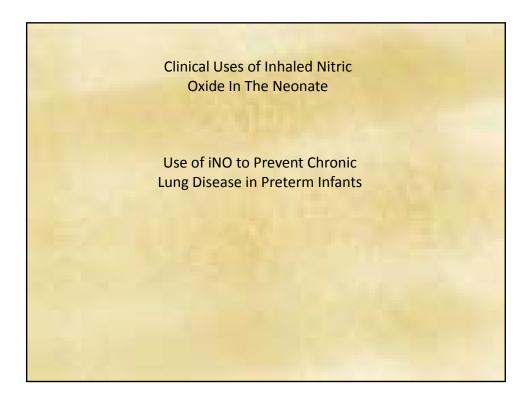


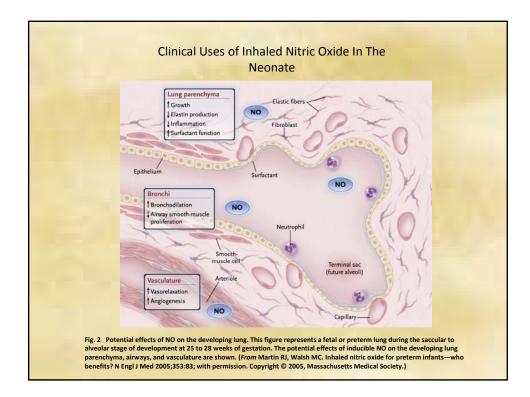


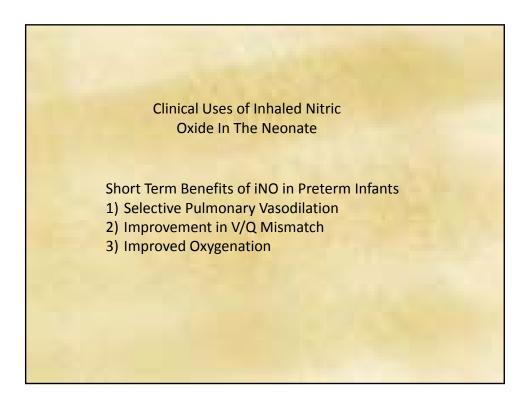

Cl	inical Uses of In	haled Nitric Oxi	de
	In The N	leonate	
Sum	mary of Clinical Re	sults from CINRGI	Study
	Piacebo	INOmax	P value
ECMO*,†	51/89 (57%)	30/97 (31%)	< 0.001
Death	5/89 (6%)	3/97 (3%)	0.48
	I membrane oxygen e primary end point (

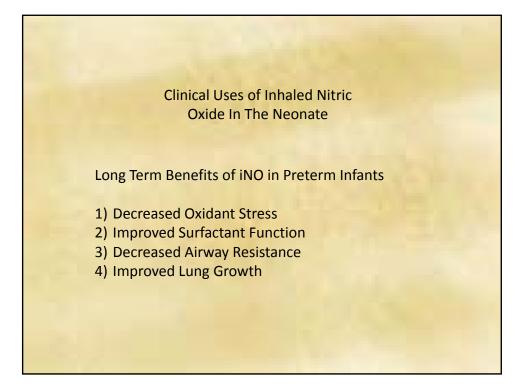

		e	
Summary of	Clinical Results	from NINOS Stu	ıdy
4	Control (n=121)	N0 (n=114)	P vaiu
Death or ECMO*,†	77 (64%)	52 (46%)	0.006
Death	20 (17%)	16 (14%)	0.60
ECMO	66 (55%)	44 (39%)	0.014

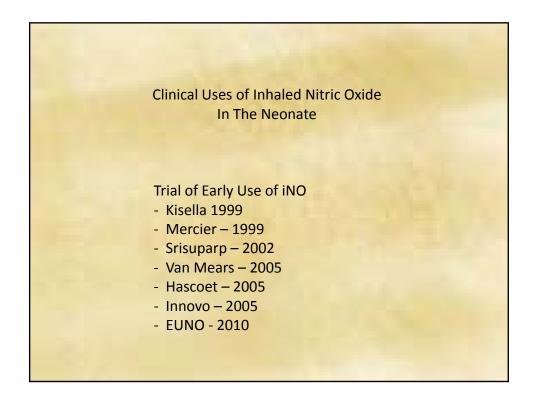


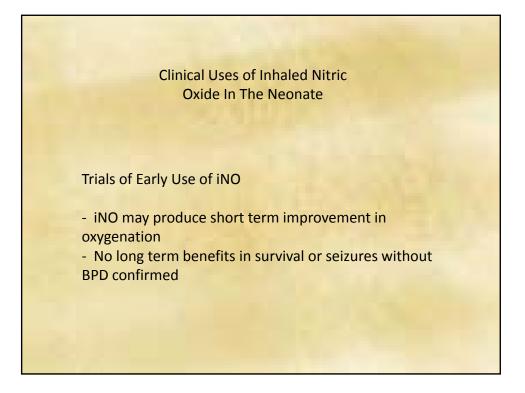


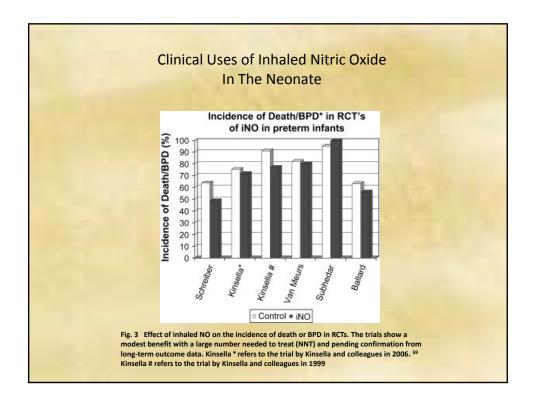


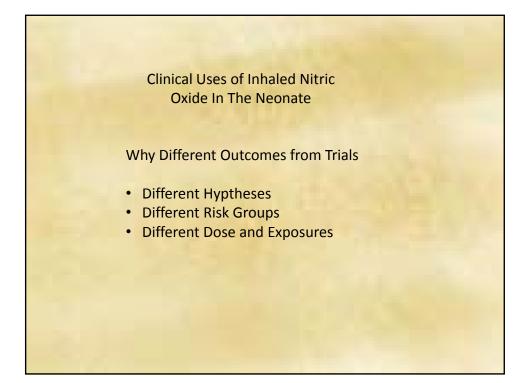


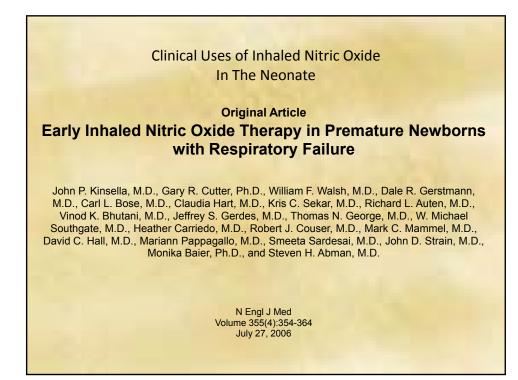


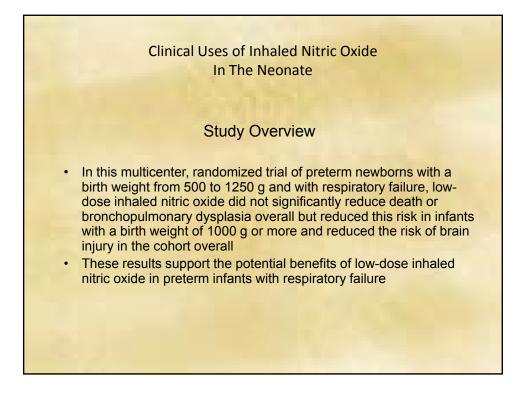


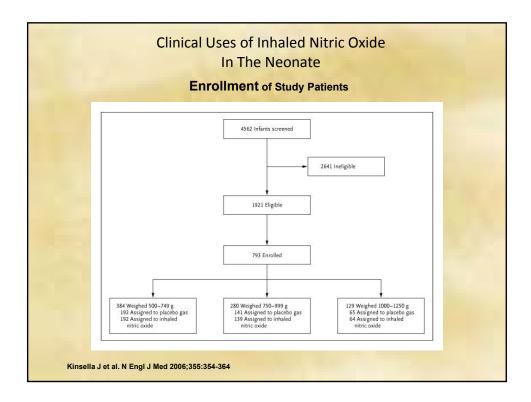












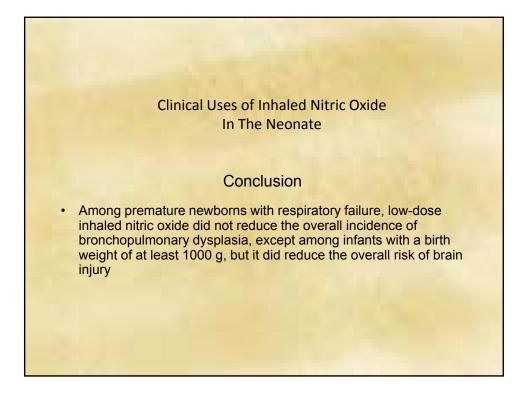
Clinical Uses of Inhaled Nitric Oxide In The Neonate

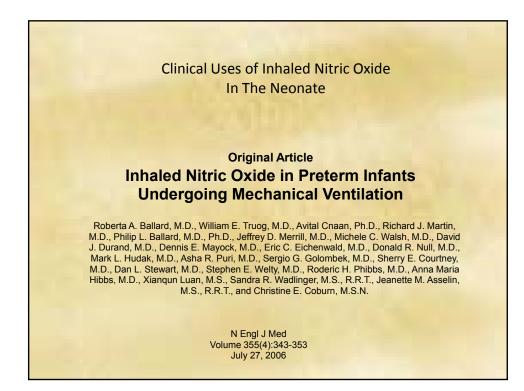
Baseline Characteristics of Patients

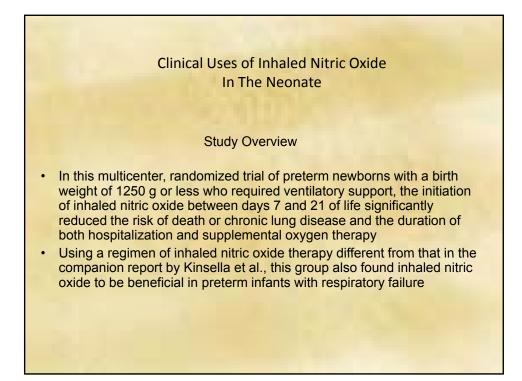
haracteristic	Inhaled Nitric Oxide (N = 398)	Placebo (N = 395)	P Value
Birth weight — g	796±190	788±185	0.54
Birth-weight strata			
500–749 g	642±76	639±71	0.66
750–999 g	851±71	843±71	0.36
1000–1250 g	1129±68	1113±77	0.21
Sestational age — wk	25.6±1.7	25.6±1.8	0.86
1ale sex — no. (%)	211 (53.0)	216 (54.7)	0.64
Aother's race or ethnic group — no./total no. (%)†			0.77
White	249/397 (62.7)	234/394 (59.4)	
Black	94/397 (23.7)	98/394 (24.9)	
Hispanic	41/397 (10.3)	48/394 (12.2)	
Other	13/397 (3.3)	14/394 (3.6)	
nborn — no./total no. (%)	296/397 (74.6)	299/395 (75.7)	0.71
ntenatal corticosteroids — no./total no. (%)	310/395 (78.5)	290/394 (73.6)	0.11
pgar score — median (interquartile range)			
At 1 min	4 (0–9)	4 (0-9)	0.71
At 5 min	7 (0-9)	7 (1-10)	0.24
lla J et al. N Engl J Med 2006;355:354-364			

		ients (cont.)	
		,	
Maternal complications — no./total no. (%)			
Cesarean section	248/398 (62.3)	276/395 (69.9)	0.02
Chorioamnionitis	76/397 (19.1)	58/394 (14.7)	0.07
Preeclampsia	65/397 (16.4)	64/394 (16.2)	0.95
Multiple gestation	96/397 (24.2)	107/394 (27.2)	0.34
Diabetes‡	24/397 (6.0)	15/394 (3.8)	0.16
Antepartum hemorrhage	64/397 (16.1)	58/394 (14.7)	0.61
Age at randomization — hr	30.5±13.4	30.1±13.2	0.65
Oxygenation index§	5.4±5.2	5.8±6.7	0.30
FIO ₂	0.4±0.2	0.4±0.2	0.82
Arterial blood gas			
PaO ₂ — mm Hg	63.9±25.6	64.3±29.7	0.81
PaCO ₂ — mm Hg	47.6±13.2	47.4±10.6	0.77
pH	7.3±0.1	7.3±0.1	0.79
Surfactant before randomization — no./total no. (%)	319/398 (80.1)	304/395 (77.0)	0.27
Type of ventilator — no./total no. (%)			0.93
Conventional	280/393 (71.2)	276/389 (71.0)	
High-frequency	113/393 (28.8)	113/389 (29.0)	
Pulmonary hemorrhage before randomization — no.	1	0	
ntracranial hemorrhage — no./total no. (%)			0.41
None	296/392 (75.5)	280/392 (71.4)	
Grade 1 or 2	72/392 (18.4)	86/392 (21.9)	
Grade 3 or 4	24/392 (6.1)	26/392 (6.6)	

In The Neonate Incidence of Death or Bronchopulmonary Dysplasia at 36 Weeks of Postmenstrual Age					
Table 2. Incidence of Death or Bronchopulmonary Dysplasia at 36 Weeks of Postmenstrual Age.					
Variable	Inhaled Nitric Oxide (N=398)	Placebo (N=395)	P Value	Relative Risk (95% CI)*	
	no./total no	. (%)			
All patients					
Death	78/394 (19.8)	98/392 (25.0)	0.08	0.79 (0.61-1.03)	
Bronchopulmonary dysplasia	212/326 (65.0)	210/309 (68.0)	0.43	0.96 (0.86-1.09)	
Death or bronchopulmonary dysplasia	282/394 (71.6)	295/392 (75.3)	0.24	0.95 (0.87-1.03)	
Birth weight of 500–749 g					
Death	55/191 (28.8)	66/189 (34.9)	0.20	0.82 (0.61–1.11)	
Bronchopulmonary dysplasia	113/144 (78.5)	100/132 (75.8)	0.59	1.04 (0.91-1.18)	
Death or bronchopulmonary dysplasia	162/191 (84.8)	159/189 (84.1)	0.85	1.01 (0.92–1.10)	
Birth weight of 750–999 g					
Death	15/138 (10.9)	24/139 (17.3)	0.13	0.63 (0.35-1.15)	
Bronchopulmonary dysplasia	82/125 (65.6)	76/120 (63.3)	0.71	1.04 (0.86-1.25)	
Death or bronchopulmonary dysplasia	95/138 (68.8)	95/139 (68.3)	0.93	1.01 (0.86-1.18)	
Birth weight of 1000–1250 g					
Death	8/65 (12.3)	8/64 (12.5)	0.97	0.98 (0.39-2.46)	
Bronchopulmonary dysplasia	17/57 (29.8)	34/57 (59.6)	0.001	0.50 (0.32-0.79)	
Death or bronchopulmonary dysplasia	25/65 (38.5)	41/64 (64.1)	0.004	0.60 (0.42-0.86)	


Clinical Us	es of Inhale	d Nitric Oxio	de	
	In The Neon	ate		
Incidence of Primary Out	omes Accor	ding to Cran	ial Ultra	sonography
incluence of Finnary eute		ung to orun		sonography
Table 3. Incidence of Primary Outcomes Acco	rding to Cranial Ultr	asonography.*		
Variable	Inhaled Nitric Oxide	Placebo	P Value	Relative Risk (95% CI)
	no./total no. (%)			
All patients				
Grade 3 or 4 ICH, PVL, or ventriculomegaly	64/366 (17.5)	87/364 (23.9)	0.03	0.73 (0.55-0.98)
Grade 3 or 4 ICH or PVL	61/372 (16.4)	80/366 (21.9)	0.06	0.75 (0.56-1.02)
Grade 3 or 4 ICH	49/398 (12.3)	63/394 (16.0)	0.14	0.77 (0.54-1.09)
PVL	19/365 (5.2)	32/356 (9.0)	0.048	0.58 (0.33-1.00)
Ventriculomegaly	19/364 (5.2)	32/359 (8.9)	0.05	0.58 (0.37-1.01)
Death or grade 3 or 4 ICH	112/394 (28.4)	140/392 (35.7)	0.03	0.80 (0.65–0.98)
Death, grade 3 or 4 ICH, or PVL	120/392 (30.6)	151/391 (38.6)	0.02	0.79 (0.65-0.96)
Birth weight of 500–749 g				
Grade 3 or 4 ICH, PVL, or ventriculomegaly	37/177 (20.9)	38/168 (22.6)	0.70	0.92 (0.62-1.38)
Grade 3 or 4 ICH or PVL	34/179 (19.0)	35/170 (20.6)	0.71	0.92 (0.60-1.41)
Grade 3 or 4 ICH	29/192 (15.1)	27/191 (14.1)	0.79	1.07 (0.66-1.73)
PVL	10/175 (5.7)	14/165 (8.5)	0.32	0.67 (0.31-1.47)
Ventriculomegaly	11/173 (6.4)	13/166 (7.8)	0.60	0.81 (0.37-1.76)
Death or grade 3 or 4 ICH	75/191 (39.3)	83/189 (43.9)	0.36	0.89 (0.70-1.14)
Death, grade 3 or 4 ICH, or PVL	77/191 (40.3)	89/189 (47.1)	0.18	0.86 (0.68-1.08)
insella J et al. N Engl J Med 2006;355:354-36	4			


	In The Neor			
cidence of Primary Outcomes	According to	Cranial Ultras	onograp	hy (cont.)
Birth weight of 750–999 g				
Grade 3 or 4 ICH, PVL, or ventriculomegaly	17/131 (13.0)	36/137 (26.3)	0.006	0.49 (0.29-0.83)
Grade 3 or 4 ICH or PVL	17/129 (13.0)	36/135 (26.7)	0.006	0.49 (0.29-0.83)
Grade 3 or 4 ICH	13/141 (9.2)	27/139 (19.4)	0.02	0.47 (0.26-0.88)
PVL	5/130 (3.8)	14/133 (10.5)	0.04	0.37 (0.14-0.99)
Ventriculomegaly	3/131 (2.3)	12/133 (9.0)	0.02	0.25 (0.07-0.88)
Death or grade 3 or 4 ICH	25/138 (18.1)	42/139 (30.2)	0.02	0.60 (0.39-0.93)
Death, grade 3 or 4 ICH, or PVL	29/137 (21.2)	47/139 (33.8)	0.02	0.63 (0.42-0.93)
Birth weight of 1000–1250 g				
Grade 3 or 4 ICH, PVL, or ventriculomegaly	10/60 (16.7)	13/61 (21.3)	0.52	0.78 (0.37-1.64)
Grade 3 or 4 ICH or PVL	10/62 (16.1)	9/59 (15.3)	0.86	1.07 (0.47-2.46)
Grade 3 or 4 ICH	7/65 (10.8)	9/64 (14.1)	0.57	0.77 (0.30-1.93)
PVL	4/60 (6.7)	4/58 (6.9)	0.96	0.97 (0.25-3.68)
Ventriculomegaly	5/60 (8.3)	7/60 (11.7)	0.54	0.71 (0.24-2.13)
Death or grade 3 or 4 ICH	12/65 (18.5)	15/64 (23.4)	0.49	0.79 (0.40-1.55)
Death, grade 3 or 4 ICH, or PVL	14/64 (21.9)	15/63 (23.8)	0.80	0.92 (0.48-1.74)


PVL were defined by ultrasonography at 30 days.

Kinsella J et al. N Engl J Med 2006;355:354-364

	In The Neonate		
Incid	lence of Secondary Outco	omes	
Table 4. Incidence of Secondary Outcor	nes.		
Variable	Inhaled Nitric Oxide (N=398)	Placebo (N = 395)	P Value
	no./total r	no. (%)	
Air leak	25/398 (6.3)	24/395 (6.1)	0.94
Pulmonary hemorrhage	24/398 (6.0)	26/395 (6.6)	0.75
Symptomatic patent ductus arteriosus			
Medical treatment	215/398 (54.0)	212/395 (53.7)	0.92
Surgical ligation	86/398 (21.6)	86/395 (21.8)	0.96
Necrotizing enterocolitis	53/379 (14.0)	46/369 (12.5)	0.54
Threshold retinopathy*	66/398 (16.6)	60/395 (15.2)	0.59
Postnatal corticosteroids	222/369 (60.2)	204/365 (55.9)	0.24
Sepsis	139/381 (36.5)	118/369 (32.0)	0.19
Medications at 36 wk			
Bronchodilators	62/309 (20.1)	60/298 (20.1)	0.98
Corticosteroids	47/308 (15.3)	37/298 (12.4)	0.31
Diuretics	113/309 (36.6)	113/298 (37.9)	0.73
Medications among survivors			
Bronchodilators	56/298 (18.8)	55/283 (19.4)	0.84
Corticosteroids	43/298 (14.4)	32/283 (11.3)	0.26
Diuretics	105/298 (35.2)	104/283 (36.7)	0.70

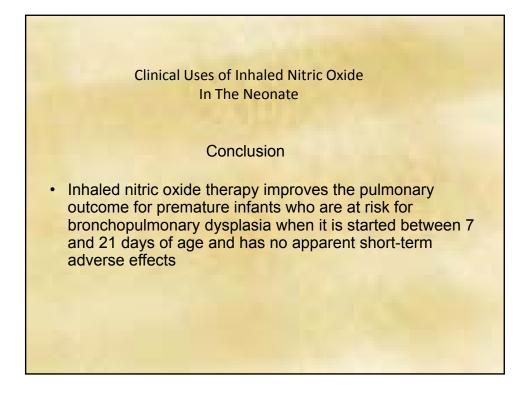
Duconno enara	teristics of the Int	fants	
Table 1. Baseline Characteristics of the Infants.*			
Characteristic Birth weight	Inhaled Nitric Oxide (N = 294)	Placebo (N = 288)	P Value†
Mean — g	766±161	759±155	0.45
500-799 g - no. (%)	197 (67.0)	197 (68.4)	0.60
800-1250 g - no. (%)	97 (33.0)	91 (31.6)	
Gestational age — wk	26±1.5	26±1.5	0.38
Male sex — no. (%)	155 (52.7)	162 (56.2)	0.37
Mother's race or ethnic group — no. (%)‡			0.22
White	170 (57.8)	145 (50.3)	
Black	76 (25.9)	90 (31.3)	
Hispanic	32 (10.9)	43 (14.9)	
Other	16 (5.4)	10 (3.5)	
Antenatal corticosteroids — no. (%)	243 (82.7)	229 (79.5)	0.23
Surfactant — no. (%)	288 (98.0)	277 (96.2)	0.25
Vitamin A — no. (%)	154 (52.4)	160 (55.6)	0.58
Age at entry			
Median (interquartile range) — days	16 (12-19)	16 (13-19)	0.68
7-14 days at entry no. (%)	112 (38.1)	115 (39.9)	0.71

162 (55.1) 149 (51.7) 120 (40.8) 126 (43.8) 12 (4.1) 13 (4.5)	Respiratory severity score at entry — no. (%)§ <3.5 3.5 to <10
120 (40.8) 126 (43.8)	3.5 to <10
12 (4.1) 13 (4.5)	
	≥10
	Clinical complications — no. (%)¶
34 (11.6) 32 (11.1)	Pneumothorax or pneumomediastinum
192 (65.3) 194 (67.4)	Patent ductus arteriosus
12 (4.1) 11 (3.8)	Necrotizing enterocolitis
70 (23.8) 58 (20.1)	Sepsis
35 (11.9) 45 (15.6)	Grade 3 or 4 intraventricular hemorrhage
	Type of ventilation — no. (%)
202 (68.7) 191 (66.3)	Conventional
65 (22.1) 74 (25.7)	High frequency
27 (9.2) 23 (8.0)	Nasal continuous positive airway pressure
65 (22.1) 74 (25.7) 27 (9.2) 23 (8.0)	Conventional High frequency

	n The Neonate	5		
Incidence	e of the Primar	y Outcome		
Table 2. Incidence of the Primary Outcome.				
Outcome	Inhaled Nitric Oxide	Placebo	P Value	Relative Benefi (95% CI)*
Overall population	no./total r	10. (%)	0.04	1.23 (1.01-1.5)
Survival without chronic lung disease	129/294 (43.9)	106/288 (36.8)	0.01	1.25 (1.01 1.55
Death or survival with chronic lung disease	165/294 (56.1)	182/288 (63.2)		
Chronic lung disease	149/294 (50.7)	164/288 (56.9)		
Death	16/294 (5.4)	18/288 (6.3)		
Birth weight of 500–799 g	, , , ,		0.14	1.20 (0.94–1.54
Survival without chronic lung disease	85/197 (43.1)	74/197 (37.6)		
Death or survival with chronic lung disease	112/197 (56.9)	123/197 (62.4)		
Chronic lung disease	99/197 (50.3)	108/197 (54.8)		
Death	13/197 (6.6)	15/197 (7.6)		1.01 (0.96-1.02
Birth weight of 800–1250 g			0.14	1.30 (0.91-1.8)
Survival without chronic lung disease	44/97 (45.4)	32/91 (35.2)		
Death or survival with chronic lung disease	53/97 (54.6)	59/91 (64.8)		
Chronic lung disease	50/97 (51.5)	56/91 (61.5)		
Death	3/97 (3.1)	3/91 (3.3)		1.00 (0.95-1.06

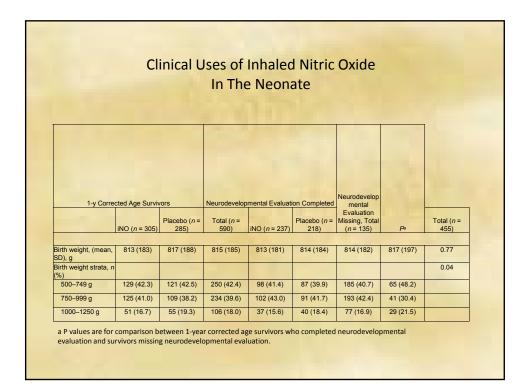
	V	eeks of	Postmenst	trual Age			
Table 3. Outcome According to the S	Severity of Diseas	e at 40 and 44	Weeks of Postme	nstrual Age.*			
Outcome	500-7	799 g	800-12	50 g	All Int	fants	P Value†
	Nitric Oxide (N=197)	Placebo (N = 197)	Nitric Oxide (N=97) number (Placebo (N=91)	Nitric Oxide (N=294)	Placebo (N = 288)	
Severity of disease at 40 wk							0.01
Discharged	82 (41.6)	60 (30.5)	43 (44.3)	38 (41.8)	125 (42.5)	98 (34.0)	
Hospitalization without support:	45 (22.8)	44 (22.3)	21 (21.6)	12 (13.2)	66 (22.4)	56 (19.4)	
Hospitalization with oxygen only	40 (20.3)	55 (27.9)	26 (26.8)	29 (31.9)	66 (22.4)	84 (29.2)	
Hospitalization with mechanical ventilation	15 (7.6)	21 (10.7)	3 (3.1)	9 (9.9)	18 (6.1)	30 (10.4)	
Death	15 (7.6)	16 (8.1)	4 (4.1)	3 (3.3)	19 (6.5)	19 (6.6)	
Unknown	0	1 (0.5)	0	0	0	1 (0.3)	
Severity of disease at 44 wk							0.03
Discharged	151 (76.6)	129 (65.5)	82 (84.5)	70 (76.9)	233 (79.3)	199 (69.1)	
Hospitalization without support:	6 (3.0)	15 (7.6)	2 (2.1)	4 (4.4)	8 (2.7)	19 (6.6)	
Hospitalization with oxygen only	19 (9.6)	26 (13.2)	8 (8.2)	9 (9.9)	27 (9.2)	35 (12.2)	
Hospitalization with mechanical ventilation	5 (2.5)	8 (4.1)	1 (1.0)	4 (4.4)	6 (2.0)	12 (4.2)	
Death	16 (8.1)	16 (8.1)	4 (4.1)	4 (4.4)	20 (6.8)	20 (6.9)	
Unknown	0	3 (1.5)	0	0	0	3 (1.0)	

Ballard R et al. N Engl J Med 2006:355:343-353


Clinical U	ses of Inhaled		de	
	III THE NEONA	lte		
Incidence of Cli	nical Complication	s after Stud	y Entry	
Table 4. Incidence of Clinical Complications after	Study Entry.			
/ariable	Inhaled Nitric Oxide (N=294)	Placebo (N = 288)	Relative Risk (95% CI)*	P Value
	no. (9	6)		
Sepsis	121 (41.2)	118 (41.0)	0.98 (0.80-1.20)	0.91
Necrotizing enterocolitis	23 (7.8)	19 (6.6)	1.17 (0.64–2.13)	0.63
Necrotizing enterocolitis requiring surgery	10 (3.4)	8 (2.8)	1.20 (0.46-3.13)	0.84
Patent ductus arteriosus treated	54 (18.4)	55 (19.1)	0.96 (0.68-1.35)	0.85
Retinopathy of prematurity	246 (83.7)	236 (81.9)	1.00 (0.93-1.07)	1.00
Retinopathy of prematurity requiring surgery	72 (24.5)	68 (23.6)	0.97 (0.72-1.31)	0.95
		10 (4.1)	1.21 (0.53-2.76)	0.67

no or only grade 1 or 2 intraventricular hemorrhage before study entry (as occurred among 259 intants receiving inhaled nitric oxide and 243 infants receiving placebo). Retinopathy of prematurity was defined as stage 1 to 4 disease by ophthalmologic examination. Treatment of patent ductus arteriosus was defined as the administration of indomethacin or surgical ligation.

Ballard R et al. N Engl J Med 2006;355:343-353


		Disease at								
Post Hoc Subgroup Analyses of Survival without Chronic Lung Disease at 36 Weeks of Postmenstrual Age										
Inhaled Nitric Oxide (N = 294)	Placebo (N = 288)	Relative Benefit (95% CI)*	P Value;							
no./total r	10. (%)									
			0.006							
		1.81 (1.27-2.59)								
55/112 (49.1)	32/115 (27.8)									
11/112 (9.8)	13/115 (11.3)									
		0.99 (0.77-1.27)								
74/182 (40.7)	74/173 (42.8)									
12/182 (6.6)	10/173 (5.8)									
			0.20							
		1.26 (1.00-1.58)								
92/162 (56.8)	69/149 (46.3)									
8/162 (4.9)	9/149 (6.0)									
		1.10 (0.74-1.64)								
37/132 (28.0)	37/139 (26.6)									
	Inhaled Nitre Oxide (N = 294) no./total n 55/112 (49.1) 11/112 (9.8) 74/182 (40.7) 12/182 (6.6) 92/162 (56.8) 8/162 (4.9)	Inhaled Nitro Coxide (N=294) no./total no. (%) 55/112 (49.1) 32/115 (27.8) 11/112 (9.8) 13/115 (11.3) 74/182 (40.7) 74/173 (42.8) 12/182 (6.6) 10/173 (5.8) 92/162 (56.8) 69/149 (46.3) 8/162 (4.9) 9/149 (6.0)	Inhaled Nitric Oxide (N = 294) Placebo (N = 288) Relative Benefit (95% Cl)* no./total no. (%)							

Post Hoc Subgroup Analyses of Survival without Chronic Lung Disease at 36 Weeks of Postmenstrual Age (cont.)									
Survival without chronic lung disease				0.05‡					
Race or ethnic group									
White	59/170 (34.7)	50/145 (34.5)	1.04 (0.76-1.43)						
Black	43/76 (56.6)	32/90 (35.6)	1.66 (1.16-2.37)						
Hispanic	21/32 (65.6)	17/43 (39.5)	1.62 (1.04-2.53)						
Other	6/16 (37.5)	7/10 (70.0)	0.57 (0.27-1.20)						
Age of 7–14 days at entry									
White	24/60 (40.0)	16/52 (30.8)	1.37 (0.81-2.32)						
Nonwhite	31/52 (59.6)	16/63 (25.4)	2.32 (1.43-3.77)						
Age of 15–21 days at entry									
White	35/110 (31.8)	34/93 (36.6)	0.89 (0.60-1.33)						
Nonwhite	39/72 (54.2)	40/80 (50.0)	1.13 (0.83-1.54)						
Severity score <3.5 at entry									
White	38/82 (46.3)	28/67 (41.8)	1.14 (0.78-1.67)						
Nonwhite	54/80 (67.5)	41/82 (50.0)	1.37 (1.05-1.80)						
Severity score ≥3.5 at entry									
White	21/88 (23.9)	22/78 (28.2)	0.88 (0.52-1.50)						
Nonwhite	16/44 (36.4)	15/61 (24.6)	1.52 (0.84-2.76)						
Nonwhite CI denotes confidence interval. Interaction terms for subgroup analyses were t The P value is for the comparison between whi	ested in a multiple logistic-regr	ession model.	1.52 (0.84–2.76)						

			Tł	ne Neor	ate			
(Continued)		Trial (<i>N</i> = 793)		Detailed-Ou	utcomes Cohor	t (N = 652)	Non–Detaile Cohort (d-Outcomes N = 141)
	iNO (<i>n</i> = 398	Placebo (<i>n</i> =) 395)	Total	iNO (<i>n</i> = 332)	Placebo (<i>n</i> = 320)	Total	Total	Pª
Gender, % female	47	45.3	46.2	48.2	46.9	47.6	39.7	0.09
Race, %								0.002
Black	23.7	25.1	24.4	22.9	22.2	22.6	32.9	
White	62.7	59.2	61	61.8	60	60.9	61.4	
Hispanic	10.3	12.2	11.2	11.5	13.8	12.6	5	
Asian/other	3.3	3.5	3.4	3.9	4.1	4	0.7	

	Clir	lical Use			Vitric Ox	kide In		
			iner	Veonat	e			
							Non-Detailed	d Outcome
F		Trial (N = 793)		Detailed-O	utcomes Coho	rt (N = 652)	Cohort (/	
	iNO (<i>n</i> = 398)	Placebo (n = 395)	Total	iNO (<i>n</i> = 332)	Placebo (n = 320)	Total	Total	Pa
	390)	395)	TOLAI	332)	320)	TOLAI	TOLAI	P~-
Birth weight, mean (SD), g	796 (190)	788 (185)	792 (187)	797 (190)	791 (186)	794 (188)	780 (184)	0.4
Birth weight strata, n (%)								
500–749 g	192 (48.2)	192 (48.6)	384 (48.4)	159 (47.9)	155 (48.4)	314 (48.2)	70 (49.7)	
750–999 g	141 (35.4)	139 (35.2)	280 (35.3)	118 (35.5)	113 (35.3)	231 (35.4)	49 (34.8)	
1000–1250 g	65 (16.3)	64 (16.2)	129 (16.3)	55 (16.6)	52 (16.3)	107 (16.4)	22 (15.6)	
Gestational age, mean (SD), wk	25.6 (1.7)	25.6 (1.8)	25.6 (1.8)	25.6 (1.7)	25.7 (1.9)	25.7 (1.8)	25.5 (1.6)	0.56

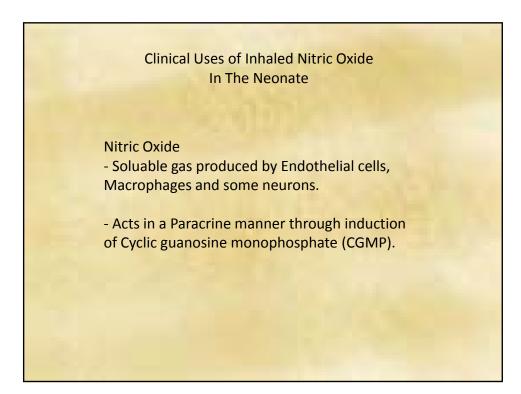
						Dxide Ir		
			Ine	Neona	te			
							Non-Detailed	
(Continued)		Trial (N = 793)		Detailed-O	utcomes Cohor	t (N = 652)	Cohort (/	
	iNO (<i>n</i> = 398)	Placebo (n = 395)	Total	iNO (<i>n</i> = 332)	Placebo (<i>n</i> = 320)	Total	Total	Pª
				0.10 (70.0)	000 (TO 0)	(50.0)	(00 (07 ()	
Inborn, <i>n</i> (%)	296 (74.6)	299 (75.7)	595 (75.1)	240 (72.3)	233 (72.8)	473 (72.6)	122 (87.1)	0.0003
Baseline OI, median (IQR)	4.0 (2.7–6.0)	4.0 (2.7–6.1)	4.0 (2.7–6.1)	4.1 (2.8–6.2)	4.1 (2.7–6.4)	4.1 (2.8–6.3)	3.5 (2.4–5.4)	0.008
Surfactant before randomization, n (%)	319 (80.2)	306 (77.5)	625 (78.8)	272 (81.9)	244 (76.3)	516 (79.1)	109 (77.3)	0.63
Baseline ICH, n (%)								
None	297 (75.8)	280 (71.4)	577 (73.6)	248 (75.8)	225 (71.0)	473 (73.5)	104 (74.3)	-
Grades 1–2	71 (18.1)	86 (21.9)	157 (20.0)	57 (17.4)	68 (21.5)	125 (19.4)	32 (22.9)	
Grades 3–4	24 (6.1)	26 (6.6)	50 (6.4)	22 (6.7)	24 (7.6)	46 (7.1)	4 (2.9)	0.06

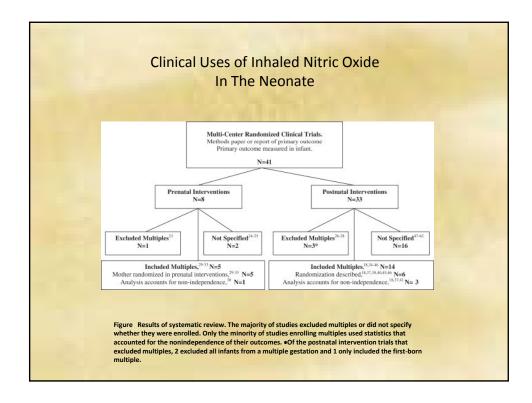
		Cli	nica		of In The N		d Nitri ate	ic Oxi	de			
	All			500–749 g			750–999 g			1000–1250		
	iNO	Placebo	Р	iNO	Placebo	Р	iNO	Placebo	Р	iNO	Placebo	Р
	INU	Placebo	P	INU	Placebo	P		Placebo	P	INU	Placebo	P
Death at 1 y corrected age, n (%)	80 (20.8)	98 (25.5)	0.12	57 (30.5)	66 (35.3)	0.32	15 (10.8)	24 (18.1)	0.09	8 (13.8)	8 (12.5)	0.83
Death or on oxygen at 1 y corrected age, n (%)	97 (25.3)	110 (28.7)	0.29	70 (37.4)	70 (37.4)	0.99	19 (13.7)	29 (21.8)	0.08	8 (13.8)	11 (17.2)	0.61
Death or NDI at 1 y corrected age, n (%)	164 (42.4)	171 (44.5)	0.55	102 (54.3)	96 (51.3)	0.57	45 (32.1)	59 (44.4)	0.04	17 (28.8)	16 (25.0)	0.63
Death, on oxygen, or NDI at 1 y corrected age, n (%)	170 (43.9)	175 (45.6)	0.65	107 (56.9)	98 (52.4)	0.38	46 (32.9)	60 (45.1)	0.04	17 (28.8)	17 (26.6)	0.78

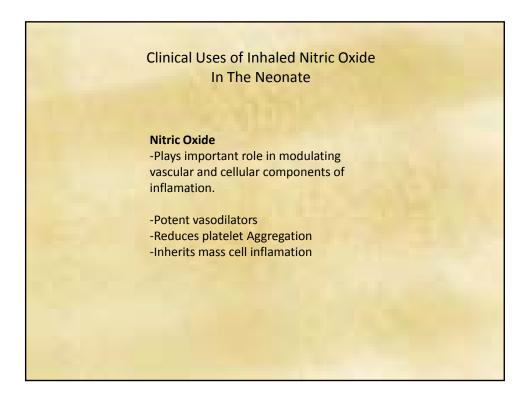
(Continued	d)			Oxi	de In	The	Neon	ate				
	All			500-749 g	ł		750-999 g			1000-1250	a	
	iNO	Placebo	Р	iNO	Placebo	Р	iNO	Placebo	Р	iNO	Placebo	P
Subjects receiving supplemental home oxygen prior to 1 y corrected age, n (%)	179 (71.9)	166 (71.9)	0.99	84 (79.3)	69 (73.4)	0.33	74 (72.6)	65 (72.2)	0.96	21 (51.2)	32 (68.1)	0.11
Subjects on oxygen at 1 y corrected age, n (%)	17 (6.5)	12 (5.0)	0.47	13 (11.7)	4 (4.0)	0.04	4 (3.7)	5 (5.3)	0.74	0 (0)	3 (6.4)	0.24
Duration of supplemental home oxygen, median (IQR),	90 (36– 182)	90 (49– 192)	0.62	107 (51– 222)	109 (62– 229)	0.45	90 (31– 158)	84 (46– 181)	0.86	70 (31– 110)	64 (37– 176)	0.88
NDI at 1 y corrected age, n (%)	84 (35.4)	73 (33.5)	0.66	45 (45.9)	30 (34.5)	0.11	30 (29.4)	35 (38.5)	0.18	9 (24.3)	8 (20.0)	0.65
Unimpaired at 1 y corrected age, n (%)	91 (38.4)	80 (36.7)	0.71	28 (28.6)	28 (32.2)	0.59	41 (40.2)	30 (33.0)	0.3	22 (59		

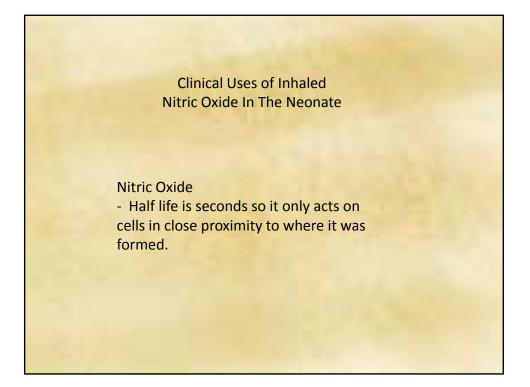
	0.	inical c		Inhaleo Neon		UNIUC		
(Continued)			111 1116	eneon	ale			
						Neurodevelop		
1-y Corre	cted Age Surviv	vors	Neurodevelop	mental Evaluat	ion Completed	mental		
	iNO (<i>n</i> = 305)	Placebo (n = 285)	Total (<i>n</i> = 590)	iNO (n = 237)	Placebo (n = 218)	Evaluation Missing, Total (n = 135)	Pa	Total (<i>n</i> = 455)
Inborn, <i>n</i> (%)	235 (77.1)	225 (79.0)	460 (78.0)	195 (82.3)	177 (81.2)	372 (81.8)	88 (65.2)	<.0001
Baseline OI, median	3.7 (2.7–5.5)	3.9 (2.7–5.7)	3.8 (2.7–5.6)	4.0 (2.7–5.6)	4.0 (2.8–5.7)	4.0 (2.8–5.6)	3.3 (2.4–5.5)	0.01
(IQR)	247 (81.0)	220 (77.2)	467 (79.2)	192 (81.0)	171 (78.4)	363 (79.8)	104 (77.0)	0.55
(IQR) Surfactant before randomization, n								0.02
(IQR) Surfactant before								
(IQR) Surfactant before randomization, n (%)	240 (79.7)	216 (76.1)	456 (78.0)	189 (81.1)	172 (79.3)	361 (80.2)	95 (70.4)	
(IQR) Surfactant before randomization, <i>n</i> (%) Baseline ICH, <i>n</i> (%)	240 (79.7) 47 (15.6)	216 (76.1) 56 (19.7)	456 (78.0) 103 (17.6)	189 (81.1) 33 (14.2)	172 (79.3) 35 (16.1)	361 (80.2) 68 (15.1)	95 (70.4) 35 (25.9)	

			In Th	e Neon	ate			
(Continued)								
1-y Corre	ected Age Surviv			mental Evaluati		Neurodevelop mental Evaluation		
	iNO (<i>n</i> = 305)	Placebo (n = 285)	Total (<i>n</i> = 590)	iNO (<i>n</i> = 237)	Placebo (n = 218)	Missing, Total (n = 135)	Pa	Total (<i>n</i> = 455)
Gestational age,	25.8 (1.7)	26.0 (1.8)	25.9 (1.8)	25.8 (1.7)	26.0 (1.8)	25.9 (1.8)	25.9 (1.9)	0.84
mean (SD), wk			48.3	46.4	50.9	48.6	47.4	0.85
mean (SD), wk Gender, % female	45.3	51.6						
	45.3	51.6						0.003
Gender, % female	45.3 22.3	23.5	22.9	19.8	19.3	19.6	34.1	0.003
Gender, % female Race, %				19.8 67.5	19.3 64.7	19.6 66.2	34.1 50.4	0.003
Gender, % female Race, % Black	22.3	23.5	22.9					0.003


(Continued)				N	leona	te					
		All			500–749 g			750–999 g			1000–1250 g	
	iNO	Placebo	Р	iNO	Placebo	Р	iNO	Placebo	Р	iNO	Placebo	Р
Study hospital												
MV duration, median (IQR), d	36 (15–53)	34 (11–55)	0.52	42 (29–63)	41 (20–64)	0.36	35 (19–52)	32 (13–52)	0.45	13 (5–23)	14 (6–37)	0.32
LOS, median (IQR), d												
Total	87 (58–108)	84 (55–107)	0.37	95 (62–119)	90 (28–111)	0.04	88 (71–106)	85 (66–109)	0.85	64 (48–74)	67 (51–87)	0.08
Survivors	92 (74–112)	94 (74–113)	0.97	107 (89– 124)	102 (86– 119)	0.22	90 (77–107)	95 (73–113)	0.8	65 (51–75)	70 (59–89)	0.07
Nonsurvivor s	12 (7–27)	13 (5–30)	0.78	15 (8-42)	11 (3–28)	0.03	7 (1–10)	16 (8–48)	0.01	10 (6–13)	11 (5–22)	0.72
Study hospital disposition, n (%)			0.48			0.21			0.74			0.24
Home without paid help	191 (72.9)	169 (71.3)		83 (75.5)	70 (71.4)		75 (71.4)	64 (69.6)		33 (70.2)	35 (74.5)	
Home with professional help	20 (7.6)	17 (7.2)		9 (8.2)	3 (3.1)		8 (7.6)	9 (9.8)		3 (6.4)	5 (10.6)	
Intermediate care or rehabilitation facility	14 (5.4)	21 (8.9)		7 (6.4)	10 (10.2)		5 (4.8)	7 (7.6)		2 (4.3)	4 (8.5)	
Transfer to secondary hospital	37 (14.1)	30 (12.6)		11 (10.0)	15 (15.3)		17 (16.2)	12 (13.0)		9 (19.2)	3 (6.4)	
LOS at secondary nospital, median (IQR), d	28 (14–53)	29 (19–54)	0.96	40 (22–54)	35 (19–56)	0.92	27 (14–52)	28 (17–31)	0.84	21 (15–42)	19 (7–56)	0.61


Study hospital LOS and duration of MV were obtained from the trial clinical data collection (*n* = 793, *n* = 398 in the iNO group, and *n* = 395 in the placebo group). Study hospital costs were obtained from analysis of detailed hospital bills (*n* = 631, *n* = 319 in the iNO group, and *n* = 312 in the placebo group). Data on postdischarge resource use were collected via telephone interview and at the in-person evaluation at 1 year of corrected age. Postdischarge resource use and cost values were calculated per hospital survivor.


		All			500–749 g			750–999 g			1000–1250 g	
	iNO	Placebo	Р	iNO	Placebo	Р	iNO	Placebo	Р	iNO	Placebo	Р
Study hospital												
Outpatient ohysician visits per subject in first 12 mo, median (IQR)	14 (9–20)	14 (9–21)	0.94	13 (9–20)	13 (9–19)	0.76	15 (10–20)	14 (10–21)	0.98	13 (8–22)	15 (9–21)	0.78
Subjects with ED visits in first 12 mo, n (%)	136 (53.8)	109 (48.2)	0.23	59 (54.6)	45 (48.4)	0.38	52 (51.0)	40 (45.5)	0.45	25 (58.1)	24 (53.3)	0.65
Subjects readmitted to the nospital in first 12 mo, n (%)	116 (45.8)	97 (42.9)	0.52	59 (54.6)	42 (45.2)	0.18	42 (41.2)	34 (38.6)	0.72	15 (34.9)	21 (46.7)	0.26
LOS per readmission, median (IQR), d	3 (1–6)	3 (2–6)	0.55	3 (1–6)	2 (1–5)	0.79	3 (1–6)	4 (2–8)	0.12	3 (2–7)	3 (2–4)	0.69
ICU use during readmission, n % of rehospitalized subjects)	40 (34.5)	32 (33.0)	0.82	21 (35.6)	16 (38.1)	0.8	14 (33.3)	11 (32.4)	0.93	5 (33.3)	5 (23.8)	0.71
MV during readmission, n (% of rehospitalized subjects)	25 (21.6)	18 (18.6)	0.59	12 (20.3)	8 (19.0)	0.87	10 (23.8)	7 (20.6)	0.74	3 (20.0)	3 (14.3)	0.68


(Continued)			Cili	lical US	es of Inl N	leona		xide in	ine			
		All			500–749 g			750–999 g			1000–1250 g	
	iNO	Placebo	Р	iNO	Placebo	Р	iNO	Placebo	P	iNO	Placebo	Р
tudy hospital							-					
osts, median												
Birth hospital fferent from udy hospital (<i>n</i> 169)	0.7 (0.5– 0.9)	0.8 (0.5– 1.3)	0.16	0.6 (0.5– 0.7)	0.6 (0.4– 1.1)	0.97	0.7 (0.4– 0.8)	0.8 (0.5– 1.5)	0.07	1.0 (0.7– 1.2)	1.1 (0.8– 1.3)	0.37
Study hospital All (n = 631)	188.4 (108.1– 292.6)	181.1 (90.8– 289.2)	0.39	240.4 (110.0- 345.1)	197.1 (74.8– 304.4)	0.08	178.3 (121.9– 271.5)	191.5 (109.0– 289.0)	0.99	128.0 (72.6– 167.1)	124.1 (86.7– 222.1)	0.37
Survivors (n 494)	217.7 (140.4– 304.0)	215.3 (145.9– 311.2)	0.7	260.6 (190.5– 365.1)	265.7 (186.4– 329.1)	0.66	194.6 (139.4– 282.1)	199.4 (136.1– 294.0)	0.88	133.4 (80.1– 172.4)	145.9 (95.7– 229.7)	0.24
Nonsurvivor (n = 137)	51.6 (28.9- 92.0)	49.1 (24.1- 97.9)	0.64	61.0 (41.1– 125.4)	45.3 (18.7- 99.1)	0.06	26.6 (12.9- 50.3)	61.8 (30.9- 109.0)	0.03	35.9 (28.9- 38.9)	51.4 (20.3- 86.7)	0.37
Secondary ospital or other nedical facility rior to discharge ome (n = 102)	40.8 (33.0– 94.2)	44.7 (24.5– 82.4)	0.46	58.8 (27.2– 104.6)	44.8 (23.1– 113.0)	0.61	40.8 (33.0– 87.1)	49.4 (25.8– 70.6)	0.65	42.4 (29.9– 58.8)	39.4 (25.8– 44.7)	0.55
Total postnatal ospitalization	195.0 (122.6- 305.1)	195.0 (97.3- 294.7)	0.35	243.5 (112.8– 358.8)	216.5 (79.7– 312.2)	0.1	193.0 (138.9– 282.8)	197.8 (130.8– 290.9)	0.99	134.0 (90.5– 186.8)	125.0 (90.0- 229.5)	0.86

					N	eonat	e						
(Continued))												
		All		500–749 g				750–999 g		1000–1250 g			
	iNO	Placebo	Р	iNO	Placebo	Р	iNO	Placebo	Р	iNO	Placebo	Р	
Study hospital													
Total costs after postnatal hospitalization	21.9 (12.0– 43.1)	21.1 (12.7– 40.0)	0.96	25.2 (13.9– 46.7)	21.1 (12.4– 37.5)	0.13	22.5 (11.8– 43.6)	22.5 (14.5– 37.6)	0.72	13.7 (9.7– 33.0)	20.0 (12.3– 46.1)	0.09	
Total costs from birth to 1 y corrected age													
All (n = 544)	235.8 (130.4– 333.8)	198.3 (99.1– 335.9)	0.19	270.1 (103.8– 376.7)	211.0 (68.3– 337.5)	0.04	231.2 (159.1– 315.9)	221.6 (133.3– 350.1)	0.95	159.9 (103.0– 214.2)	144.8 (102.6– 262.3)	0.57	
Survivors (n = 407)	260.3 (179.4– 355.6)	265.7 (180.5– 365.9)	0.87	314.8 (253.8– 407.2)	304.6 (228.8– 391.0)	0.49	238.4 (178.5– 334.1)	251.4 (185.1– 364.3)	0.71	169.5 (118.8– 222.5)	172.1 (123.5– 325.4)	0.39	
Nonsurvivor s (n = 137)	52.4 (29.9– 92.0)	49.5 (24.5– 98.3)	0.65	61.2 (41.1– 125.4)	45.3 (18.7– 99.1)	0.07	26.6 (13.2– 50.7)	62.3 (30.9– 109.4)	0.03	36.5 (29.9– 38.9)	51.4 (21.0– 87.3)	0.37	

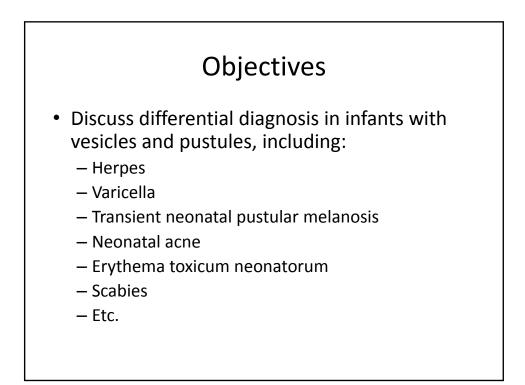
AMERICAN COLLEGE OF OSTEOPATHIC PEDIATRICIANS

SUNDAY, OCTOBER 24, 2010

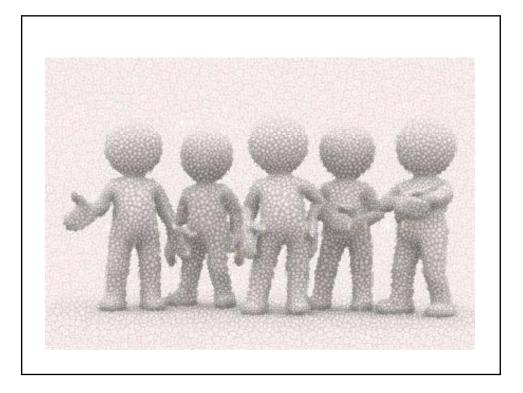
PERINATAL / NEONATAL

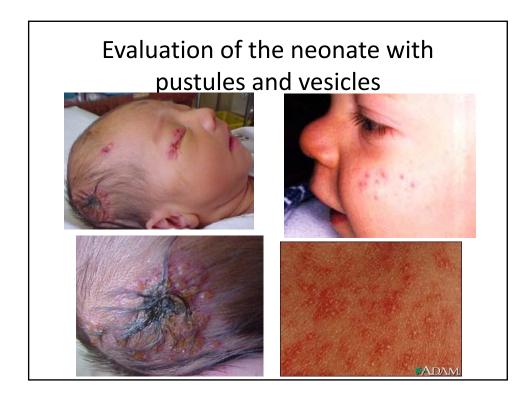
Moderator – Holly Payne, DO, MS, FACOP Co-Moderator (BOT Member) – James Kirk, DO, FACOP

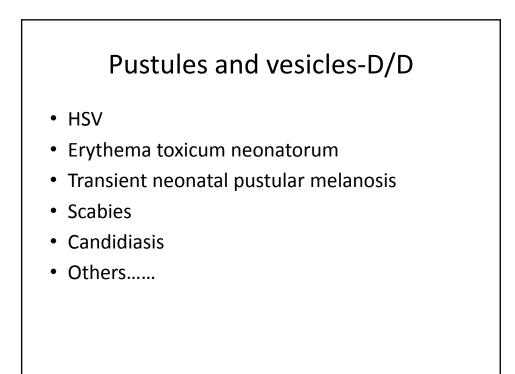
10:30 am - 11:00 am

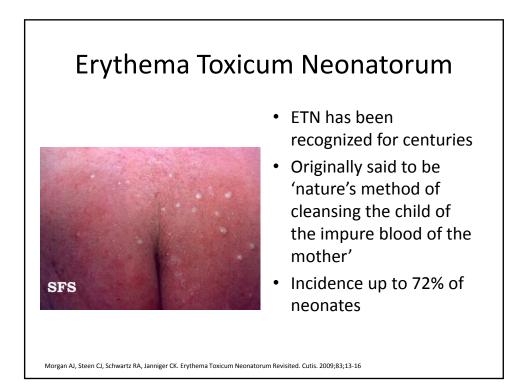

Neonatal Dermatology

Melinda F. Greenfield, DO


Objective: Upon completion of this lecture, the participant will be able to discuss differential diagnosis in infants with vesicles and pustules, including: herpes, varicella, transient neonatal pustular melanosis, neonatal acne, erythema toxicum neonatorum, and scabies.


NEONATAL DERMATOLOGY


Melinda F. Greenfield, DO Albany Dermatology Clinic Albany, Georgia

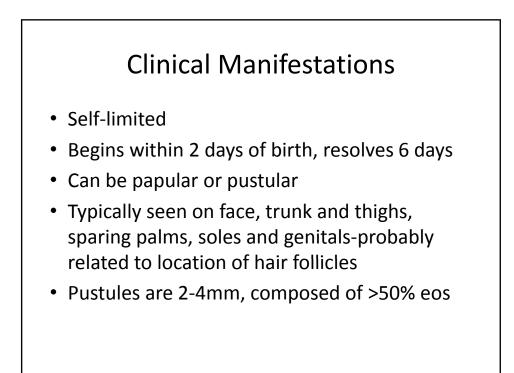


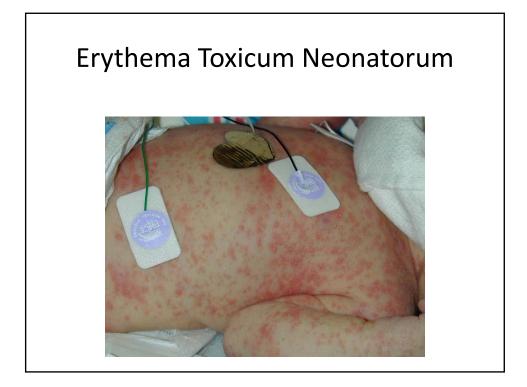
2 day old with rash

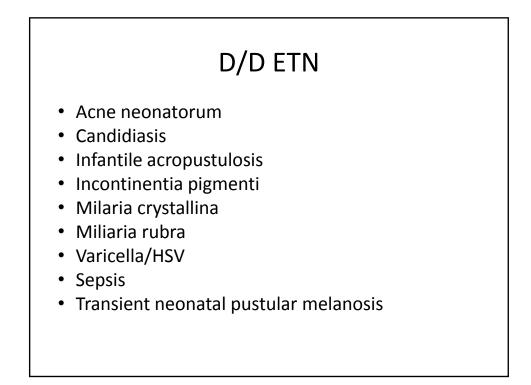
- Rash started 24 hours after birth
- Yellow pustules on an erythematous base
- Lesions seen on face and trunk
- Lesions change hourly
- No constitutional symptoms

Erythema Toxicum Neonatorum

- No racial, ethnic, sexual or seasonal predilection
- Higher incidence in infants that are term, weighing more than 2500g

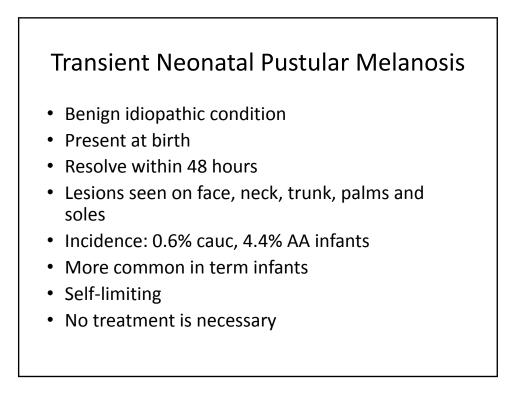



Erythema Toxicum Neonatorum


- Etiology is unknown but thought to be related to allergies due to the eosinophilic infiltrates
- Studies have found no relationship to family history of atopy
- Keitel and Yadav considered ETN "a transient adjustment reaction of the newborn skin to mechanical or thermal stimulation"

ETN

- A 2005 study, Marchini et al, looked at neonates with ETN using microbial cultures and scanning and transmission electron microscopy
- They found microorganisms (staph) localized to the follicular epithelium and internalized into surrounding immune cells
- Concluded that ETN is a cutaneous immune reaction to "an acute, transitory attack of the commensal microflora" that penetrate the newborn skin via hair follicles

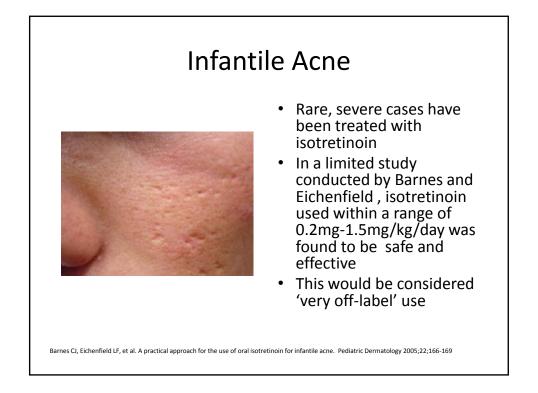


Treatment

- Antihistamines as needed, however the rash is asymptomatic to the infant
- Reassurance to parents is usually all that is needed

Newborn with rash 4 day old AA infant with 2 mm pustules and vesicles noted on face, trunk, palms and soles Developed on first day of life The lesions rupture leaving an area of discoloration behind

Infant with rash on face

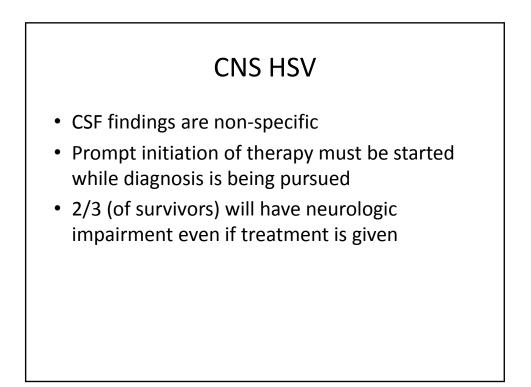


- Lesions on face since 2 weeks of age
- More lesions are developing
- Does not seem to bother child but parents are very unhappy
- Mom tx with otc hydrocortisone cream

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Newborn with vesicles

- Vesicles were noted on face, scalp and trunk of a newborn infant
- What is your biggest concern for this infant?


Neonatal HSV infection Neonatal HSV occurs in 1: 2500-5000 deliveries 70% due to HSV-2, 30% HSV-1 Usually seen in first or second week of life Neonates have highest risk of developing encephalitis and dissemination

Neonatal HSV 80% are born to mothers who do not know they have an HSV infection 85% are transmitted during delivery through contact with lesions on cervix or vaginal secretions 3 associated syndromes: skin, eye & mouth disease CNS disease disseminated disease

CNS HSV

- Presents by 3rd week of life
- Only 60% will have skin lesions
- Untreated, has 50% mortality
- Prompt treatment, 18% mortality
- Diagnosis must be entertained in any infant with s&s of encephalitis (seizures, apnea, bradycardia, cranial nerve abnormalities)

Disseminated HSV

- Usually presents in first week of life
- All organs are susceptible
- Cutaneous lesions may not be present
- Diagnosis should be considered in any infant who has a clinical picture of sepsis and does not respond to antibiotics or who has both pneumonitis and hepatitis
- Without treatment mortality>80%
- With treatment 50-60%

Factors that increase risk of neonatal HSV disease

- Primary HSV infection (risk is 10-20x greater)
- Especially if acquired late in pregnancy
- Membranes ruptured>4 hours
- Prematurity
- Trauma (fetal scalp monitors)

Newborn with vesicular rash

- Rash developed 1-2 weeks after birth
- Mother had similar rash at end of her pregnancy but her rash was very mild and she never told her doctor about it

Neonatal Varicella

- Usually acquired from maternal infection during last 3 weeks of pregnancy
- 20% mortality rate if mother has lesions 4 days before to 2 days after delivery

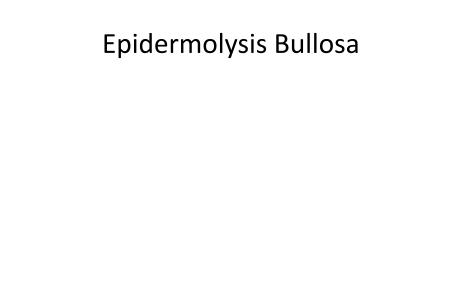
Blisters at Birth

 This blister was present at birth to an otherwise healthy term infant

Blisters on hand

- 1 month old developed large blisters on bilateral hands
- No constitutional symptoms
- Twin died in utero
- Born 6 weeks premature

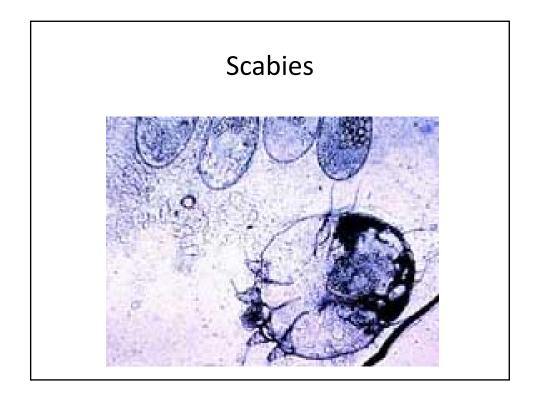
Blisters on hand

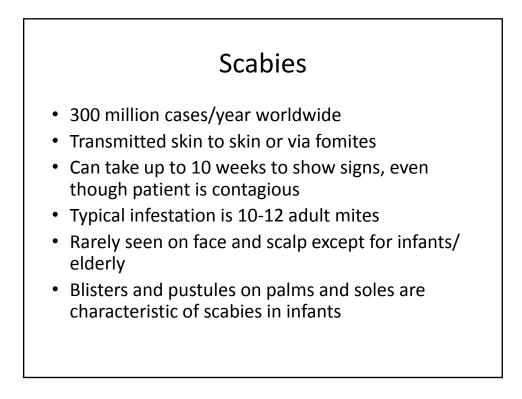

- Mother describes area as rapidly developing blisters overnight after noticing some initial redness before bed
- Went to pediatrician who sent her to burn center in Augusta
- Was accused of burning the baby- hot water immersion of hands, due to areas of sparing
- Child services and police were called

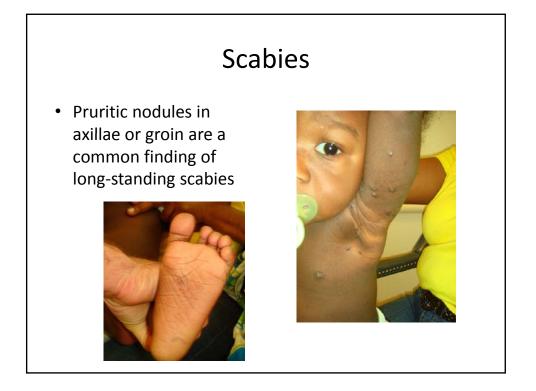
Epidermolysis Bullosa

- Group of inherited diseases characterized by blistering lesions on skin, mucosa
- Usually occur at sites of friction/trauma
- Usually occurs at birth or shortly after
- Males and females equally affected
- Autosomal dominant and recessive forms
- 3 major types based upon layer of involvement within the skin

Types	of EB
Type of EB	Site of blister formation within skin
EB Simplex	Epidermis (keratinocytes)
Junctional EB	Lamina lucida within the basement membrane zone (between epid/ dermis)
Dystrophic EB	Lamina densa and upper dermis



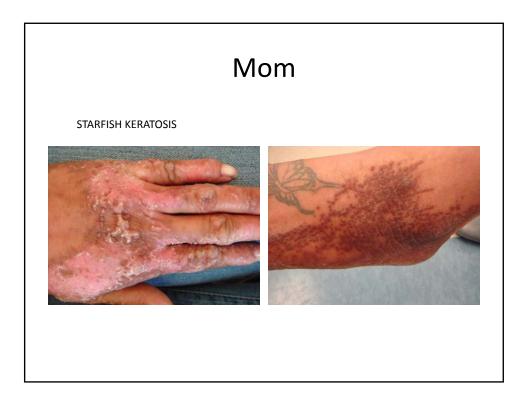


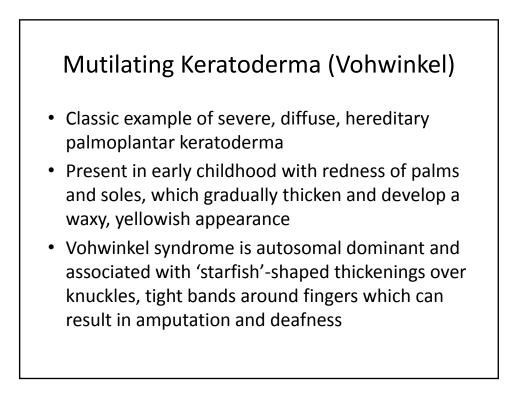

- Infant with several week history of pustules and vesicles on body hands/feet
- Poor feeding/weight gain has been noted

<section-header><list-item><list-item><list-item><list-item>

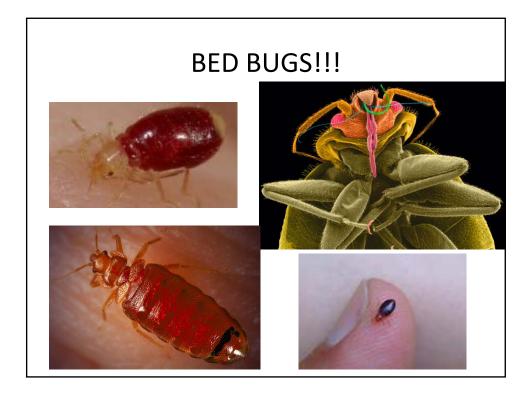
Acropustulosis of infancy

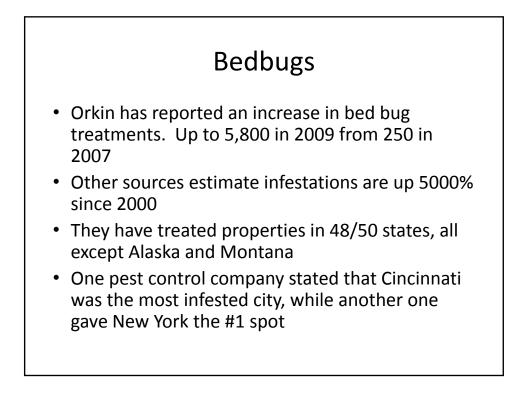
- Seen in first 2-3 years of life
- Can last months-years
- Sometimes preceded by scabies-may be an allergic rxn to the mite
- Tends to wax and wane over time


Acropustulosis of Infancy

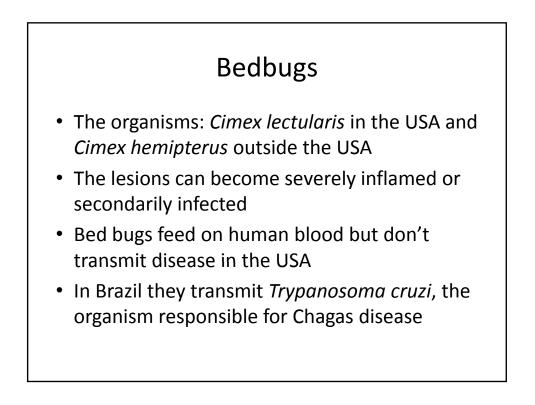

- Children tend to be irritable and uncomfortable
- Bouts last 7-15 days, recur in 2-4 week intervals
- Intensity of attacks diminish over time
- Seen mostly in African American males
- Treatment: high potency steroids/dapsone

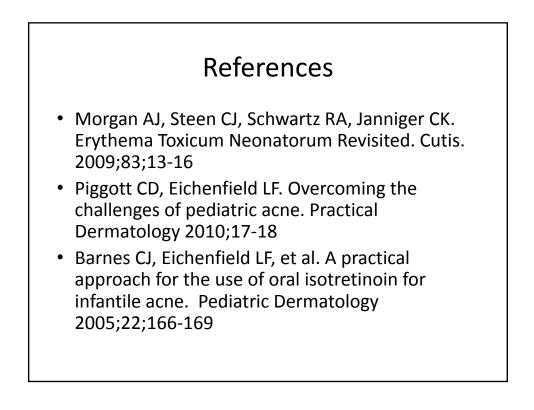
Make The Diagnosis





Starfish Keratosis





AMERICAN COLLEGE OF OSTEOPATHIC PEDIATRICIANS

SUNDAY, OCTOBER 24, 2010

PERINATAL / NEONATAL

Moderator – Holly Payne, DO, MS, FACOP Co-Moderator (BOT Member) – James Kirk, DO, FACOP

11:30 am - 12:30 pm

Fetal Therapy: Here and Now - aka What's Crazy, Sexy and Cool

Garrett Lam, MD

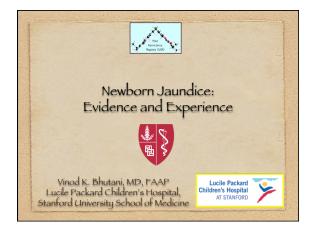
Objective: Upon completion of this lecture, the participant will be able to identify specific fetal issues potentially amenable to fetal therapy, understand the moral dynamic that overlies fetal therapy procedures, and determine what characteristics make up a true fetal therapy center.

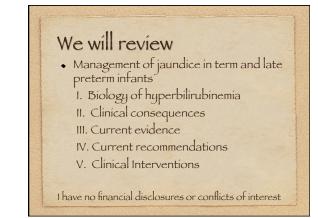
American College of Osteopathic Pediatricians

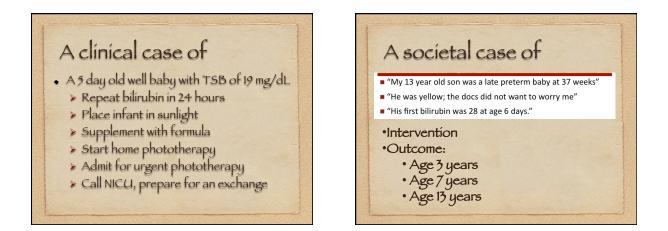
SUNDAY, OCTOBER 24, 2010

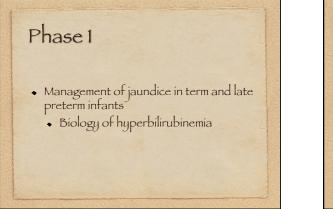
PERINATAL / NEONATAL

Moderator – Holly Payne, DO, MS, FACOP Co-Moderator (BOT Member) – James Kirk, DO, FACOP

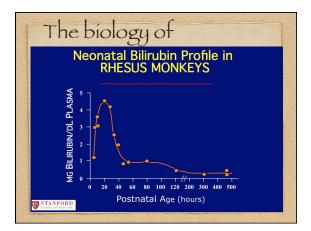

2:00 pm - 3:00 pm

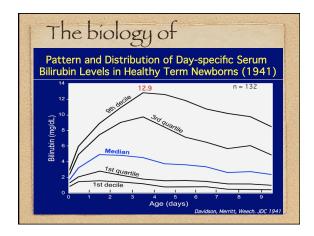

Newborn Jaundice: Alerts, Evidence and Practice

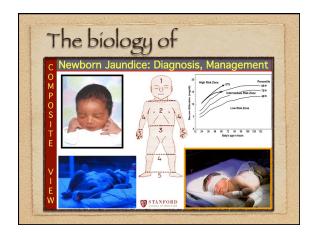

Vinod K. Bhutani, MD

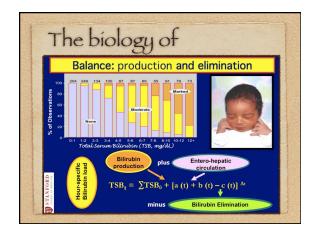

Objrctive: Upon completion of this lecture, the participant will be able to review the impact of 2009 AAP Expert Panel *Guidelines for Management of Jaundice*, review the clinical consequences of unmonitored and untreated newborn jaundice, and understand the vital role of lactation support for a safe experience with newborn jaundice.

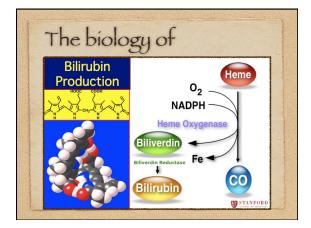
Case Discussions: Five cases will be presented to highlight alert, evidence and guideline: Review a clinical case of newborn jaundice that progresses, identify the potential area of lapses in care that could lead to adverse outcome, and apply this analysis to a systems approach for a safer approach to newborn jaundice.

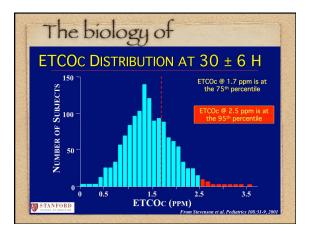


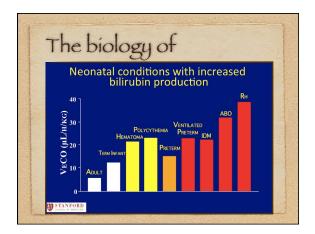


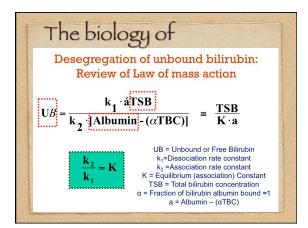


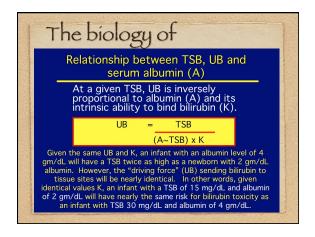


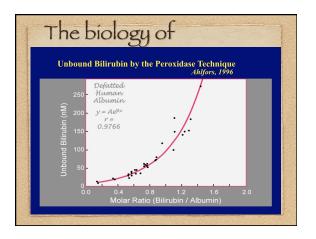


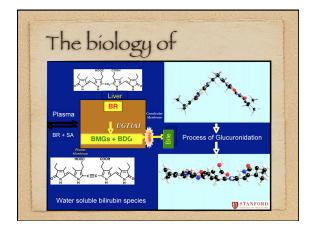


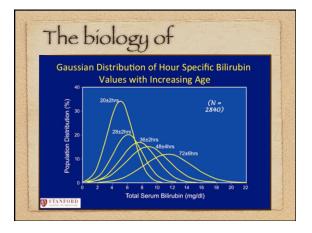


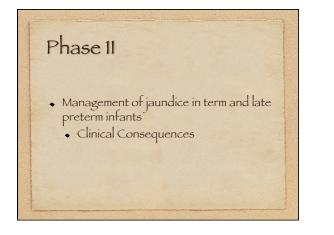


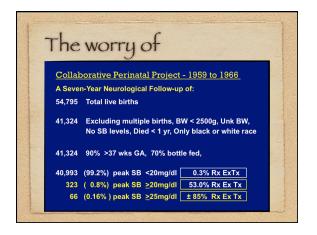


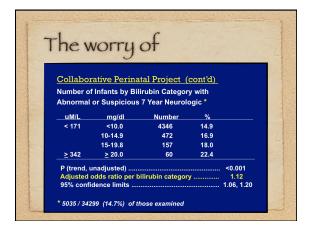


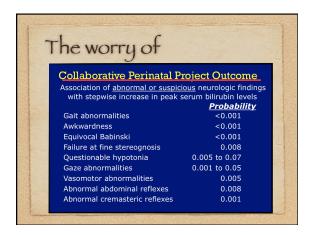


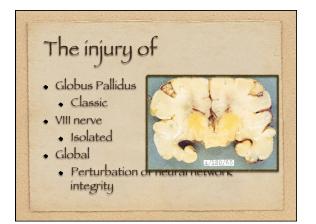


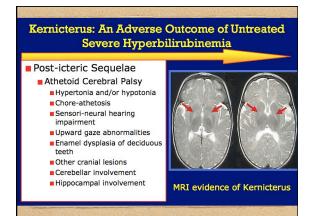









The w	orry of	
Newborn Jaundice	>80%	2 AC
Bilrubin >95th %ile	8 to 11%	
Bilirubin >342 µmol/L	2,000/100,000	Kar
Use of Phototherapy	4-8,000/100,000	
Exchange Transfusion		Acute Kernicterus: 5-10/100,000 live-births
Bilirubin >513 µmol/L	25-60/100,000	líve-bírths



Collabor	ativo Porina	tal Project	(cont'd)
		irubin Catego	
		leurologic Exa	
uM/L	mg/dl	Number	%
≤ 171	< 10.0	1090	3.7
171-255	10-14.9	116	4.0
256-341	15-19.8	43	4.9
<u>≥</u> 342	<u>≥</u> 20	12	4.5
P (trend, un	adiusted)		0.06
		er bilirubin cat	
			egory 1.10 0.98. 1.

Perturbations of developmental events on neuronal integrity

- Evidence of altered neurogenesis, loss of dendrites and axons, with changes of neurite patterning and deficient synaptic wiring emerge over time:
 - ^a a) mental retardation during childhood
 - 🇯 b) schizophrenia
 - 🕯 c) dementia during early adulthood
- Other perinatal conditions that have similar longterm impact, include: 1. sepsis/inflammation;
 2. hypoxia/ischemia;
 3. iron deficiency.

Does bilirubin impair maturation of neuronal network activity?

- Clinical Reports of "minimal cerebral damage" in infants who did not sustain kernicterus: Gervais and Day, 1951
- * "Minimal Cerebral Damage" in infants with prolonged exposure to bilirubin and low bilirubin binding: Boggs and Johnson, 1981.
- In vivo model of kernicterus (Gunn rat model): Cerebellar hypoplasia with reductions in the volume and number of neurons were detected.
- * Newborn Autopsy: Neuronal necrosis of pyramidal cell layer of hippocampus with kernicteric changes.

Perturbations in developmental sequence can

cause neurodevelopmental disorders

- Axonal elongation: for proper formation of neural circuits are dependent on growth cones
- Growth cones: can suffer retraction or collapse promoting mild to severe alterations of neuronal arborization.
- Dendritic spines: abnormalities in number, size, and morphology

Summary of in vitro studies that UCB:

- * reduce viability of proliferating neural precursors
- decrease neurogenesis: no effect on astrogliogenesis
- increase cellular dysfunction (differentiating cell)
- decrease dendritic and axonal branches with 3-9 days of in vitro exposure
- leads to a smaller neuron growth cone area
- decrease density of dendritic spines and synapses

Early bilirubin exposure of developing neurons: neuritic atrophy, cell death, decreased neuronal arborization, arrested neuritic growth and neuritic hypoplasia [Brites et al, 2009]

- Neuro-developmental consequences of moderate hyperbilirubinemia are impacted by bilirubin's ability to promote alterations in neurogenesis, neuritogenesis, and synaptogenesis.
- ^{*} Such deleterious role of UCB in neuronal differentiation, development, and plasticity may compromise the performance of the brain in later life, including learning disability.

Phase III

- Management of jaundice in term and late preterm infants
 - Current evidence
 - · Reviewed 2004 (AAP, AHRQ, CDC)
 - Ongoing Review

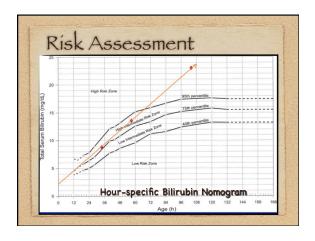
The identification of

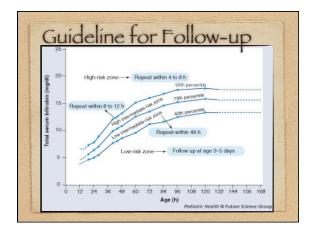
- Infants with significant hyperbilirubinemia
 - · due to hemolysis
 - · associated with hypoalbuminemia
 - · late preterm and preterm infants
 - · with concurrent sepsis
 - with G6PD deficiency

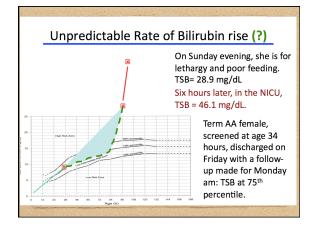
Limitations of Visual Assessment of Jaundice in a **Diverse Newborn Population**

Predischarge Visual Assessment of Jaundice

- Nurses' assessment of jaundice extent (n=522) was only rately correlated with total bilirubin concent was similar in black and non-black infants (p=0.13).
- The correlation was particularly weak among infants <38 wks GA compared with infants ≥38 wks GA (p=0.05).
- ndice extent had poor overall accuracy for predicting risk of significant hyperbilirubinemia (c-statistic = 0.65).
- Complete absence of jaundice had high sensitivity (95%) and ellent negative predictive value (99%) for ruling out the velopment of significant hyperbilirubinemia.


The use of




- Total bilirubin
- · Clinical risk factors: BIND score
- Bilirubin-albumin ratio
- Unbound bilirubin (bilirubin binding)
- Auditory brainstem response

Bhutani, Keren and Johnson. Contemporary Pediatrics. 2005

• Magnetic resonance imaging (post).

PRESENCE OF G6P BY SEX		' IN U.S. MILITAI PORTED ETHNIC	
		Deficient	
Ethnicity	Female	Male	Total
American Indian/ Alaskan	112 (0.9)	492 (0.8)	604 (0.8)
Asian	465 (0.9)	1,658 (4.3)	2,123 (3.6)
African American	2,763 (4.1)	8,513 (12.2)	11,276 (10.2)
Hispanic	842 (1.2)	4,462 (2.0)	5,304 (1.9)
Caucasian	4,018 (0.0)	38,108 (0.3)	42,126 (0.3)
Unknown/other	228 (1.8)	1,641 (3.0)	1,869 (2.9)

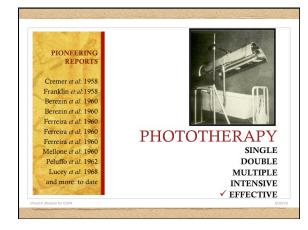
Clinical ar Risk	nd Biliru Assessma		ed
Clinical risk factors for bilirubin neurotoxicity		udelines: T ve phototh	
 Prematurity Iso-immune hemolytic anemia 	Risk for BIND	TSB at age 48 hours	TSB at age >96 hours
G6PD deficiencySignificant lethargy	High (risk factors and 35-376/7 wk)	188 (μmol/L) 11 mg/dL	257 (μmol/L) 15 mg/dL
SepsisAcidosisAsphyxia	Moderate (35-376/7 wk)	222 (µmol/L) 13 mg/dL	308 (μmol/L) 18 mg/dL
 Temperature instability Albumin <3.0 g/dL 	Low (healthy term)	257 (μmol/L) 15 mg/dL	359 (μmol/L) 21 mg/dL
Based on a technical review for AHRQ: Ip et al: ahr	q.gov		

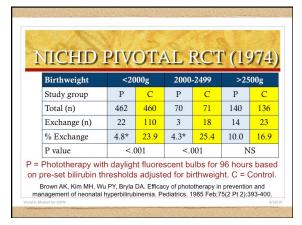
		-Albumin Ra of this Bindir	
B:A Ratio	Stable Binding	Displaceable Bilirubin	Bilirubin displaced
B: A [mg/g] (molar ratio)	< 5.3 (molar >0.63)	5.3 to 6.9 (>0.63 to <0.8)	<u>></u> 7.0 (molar: >0.80)
TSB to Serum Albumin of 3.2 g	17 mg/dl	17 to 22	22 mg/dl
TSB to Serum Albumin of 3.6 g	19 mg/dl	19 to 25	25 mg/dl
TSB to Serum Albumin of 4.3 g	23 mg/dl	23 to 30	30 mg/dl
Shutaní VK, Keren R and	Johnson L. Acute B	ilirubin Encephalopath	ny, Contemp. Ped. 200

Phase IV

- Management of jaundice in term and late preterm infants
 - Current Recommendation
 - 2004 AAP recommendations
 - · BiliTool.org
 - AAP Expert Panel Report: 2009

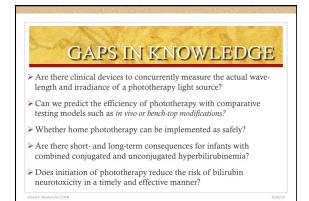
EXPERT AAP PANEL RECOMMENDS

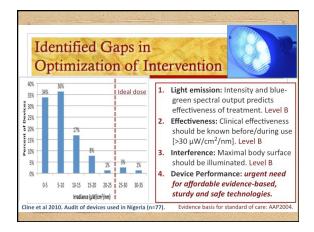

- We recommend universal predischarge bilirubin screening using total serum bilirubin or transcutaneous bilirubin measurements which help to reduce risk of subsequent severe hyperbilirubinemia.
- We recognize that the quality of evidence for recommending universal predischarge screening.... is limited and, in the absence of higher level of evidence, our recommendations, therefore, be based on expert opinion.


isels, Bhutani, Bogen, Newman, Stark and Watchko, Pediatrics: 2009

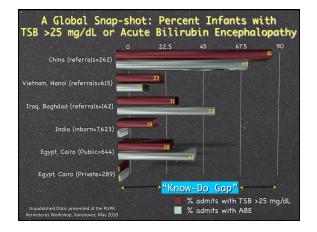
Phase V

- Management of jaundice in term and late preterm infants
 - Current Interventions
 - Enteral feeds
 - Phototherapy
 - Exchange transfusion
 - Chemoprevention





TIME	ELINESS OF TRI	CATIMENT
Parameter	Recommendation	Implementation
Timeliness of implementation	Urgent or "crash-cart" intervention for excessive TSB	Conduct procedures while on treatment
Continuity of therapy	Briefly interrupt for feeding, bonding, nursing care	After confirmation of bilirubin decline
Efficacy of intervention	Periodically measure rate of response in TSB reduction	Degree of TSB decline
Duration of therapy	Discontinue at desired TSB; be aware of rebound.	Serial TSB based on rate of decline



- Management of jaundice in term and late preterm infants
 - Lessons Learned
 - Health outcomes
 - Societal outcomes

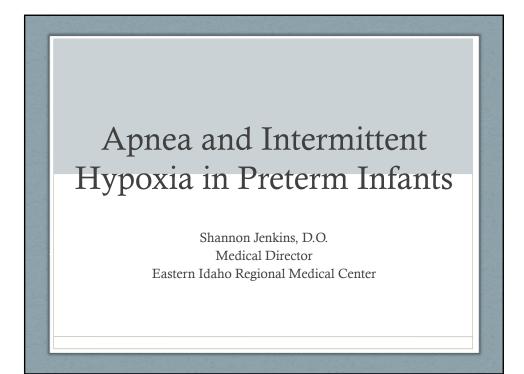
- And			dentif	
Medical Interventions Decrease entero-hepatic circulation		Prevention	Analogy	Incidence
 Increase enteral milk intake Promote breast 		Jaundice screening and lactation support	use of a safety belt	For all infants
feeding and milk transfer ➤ Supplement enteral intake		Use of effective phototherapy (hospital)	use of emergency procedures	Less than 1 in 50
 Phototherapy Exchange transfusion Chemoprevention 	V	Prepare for an exchange transfusion	a crash landing	A rare event

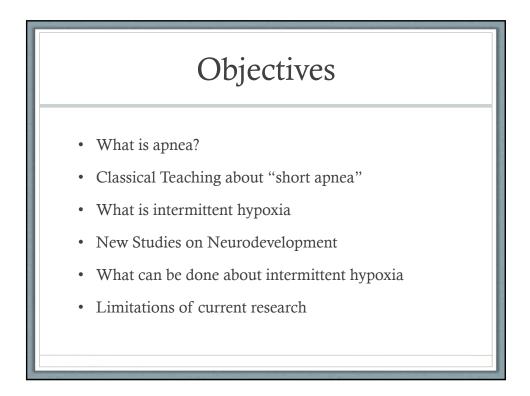
Lessons	LCUI	neu		
Su	ccessful		Outcomes: Strategies	
POST IMPLEMENTATION OF 2004 AAP GUIDELINES AT BIRTHING FACILITIES	USA Rate /100,000 live births 116 national hospitals (HCA: 2004-8)** PRE- SCREENING Systems approach		CALIFORNIA Rate/100,000 live birth CPQCC: 2007-8 (126 site Knauer et al (PAS, 2010	
Total live-births	129,345	1,120,114		
TSB ≥25 mg/dL	52	29.5	17.9	
TSB ≥25 - 29.9 mg/dL	43	26.5	14	
TSB ≥30 mg/dL	9	4		
Exchange Transfusion	x	x	4	
Mortality	0	0	0	

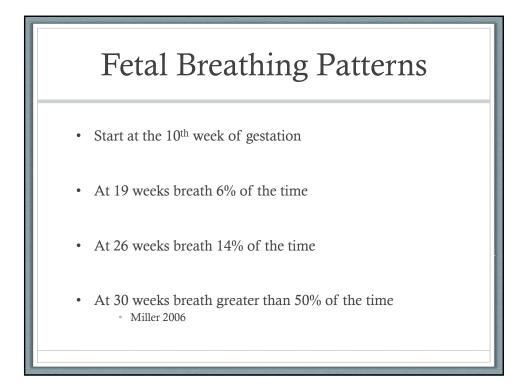
AMERICAN COLLEGE OF OSTEOPATHIC PEDIATRICIANS

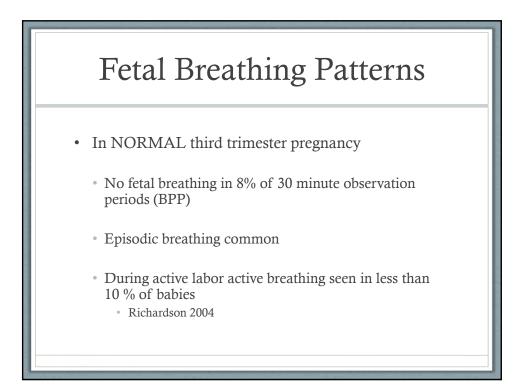
SUNDAY, OCTOBER 24, 2010

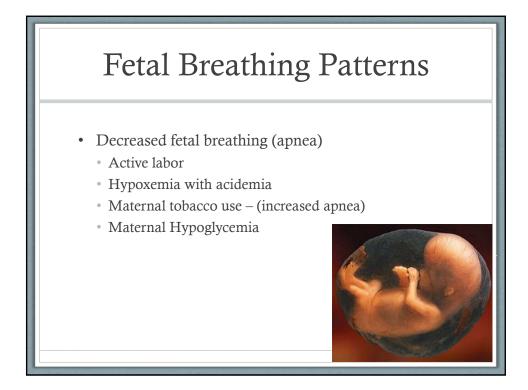
PERINATAL / NEONATAL

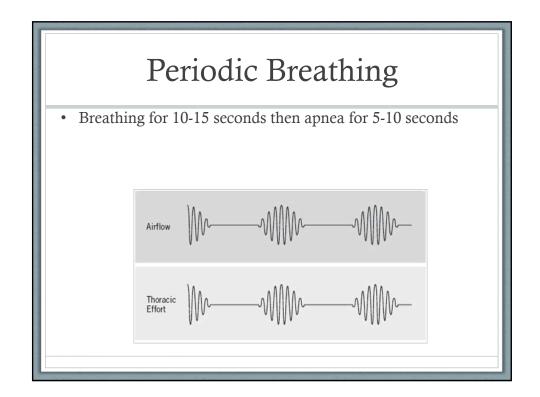

Moderator – Holly Payne, DO, MS, FACOP Co-Moderator (BOT Member) – James Kirk, DO, FACOP

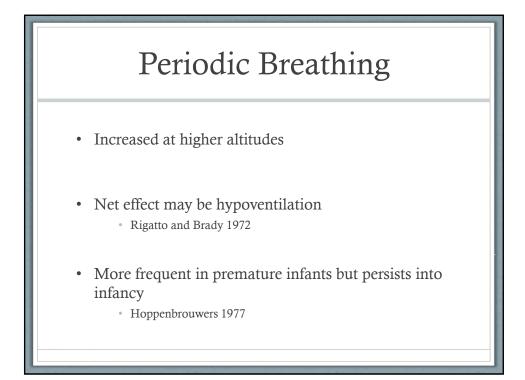

3:00 pm - 4:00 pm

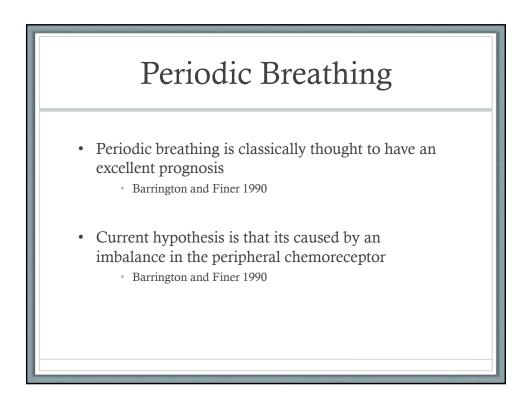

Apnea and Bradycardia

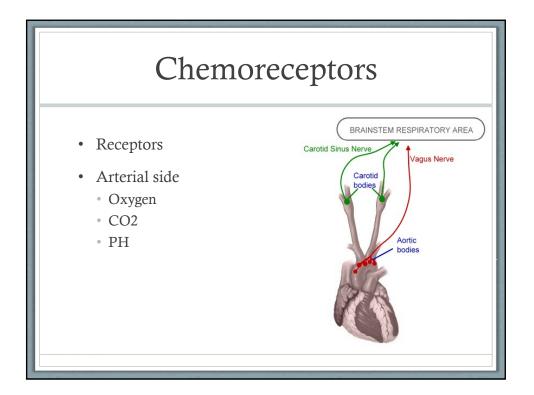

Shannon Jenkins, DO

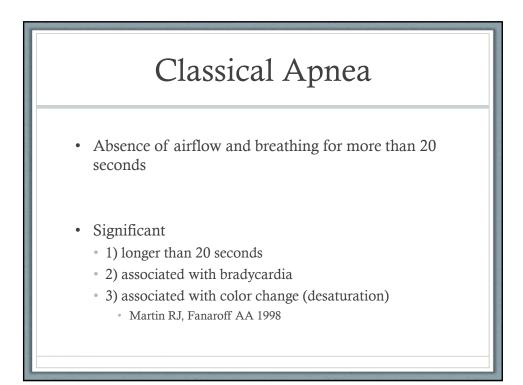

Objective: Upon completion of this lecture, the participant will be able to gain a better understanding of Apnea of prematurity and review the current literature on how long of a desaturation may be harmful.

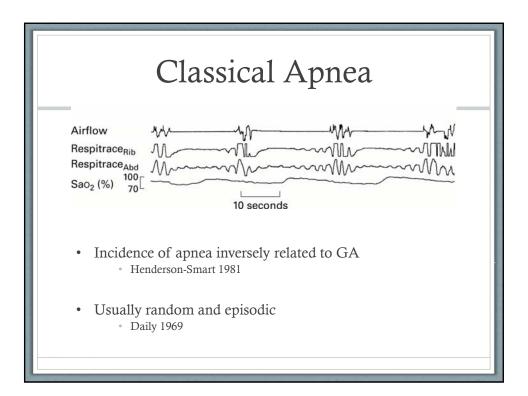


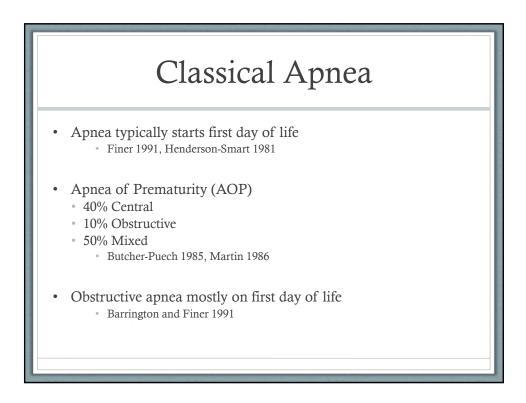


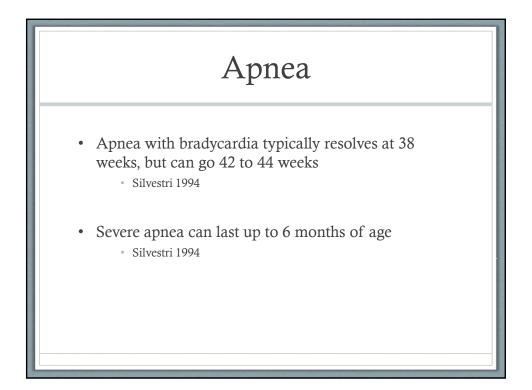


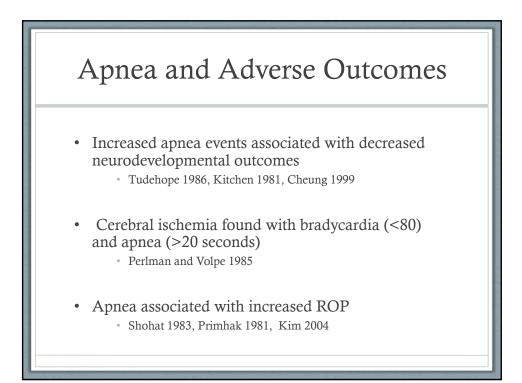


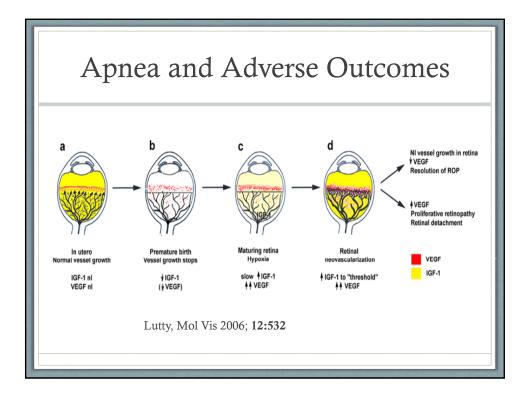


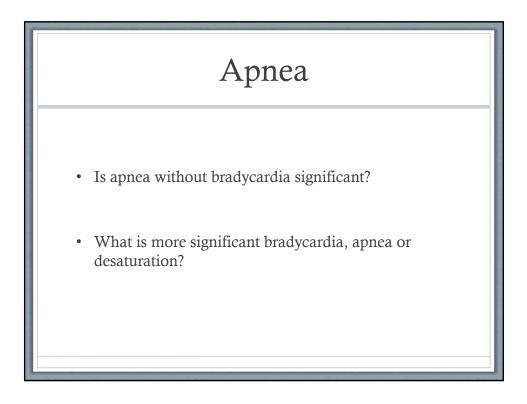


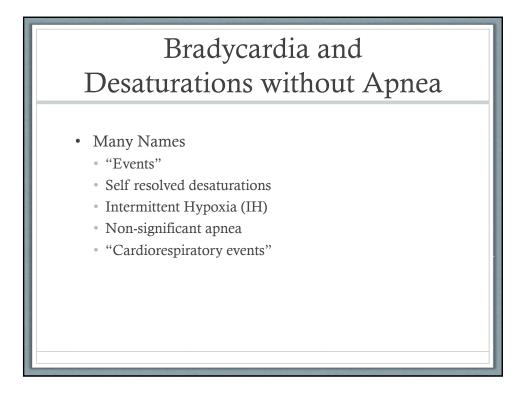


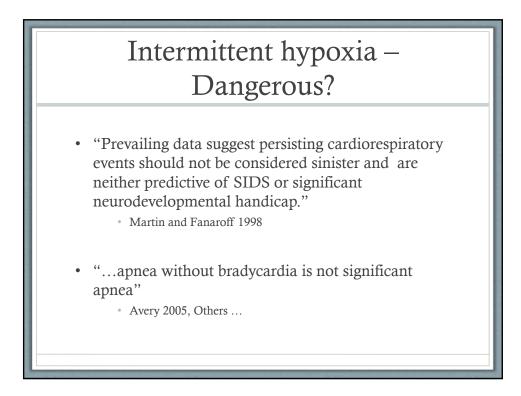


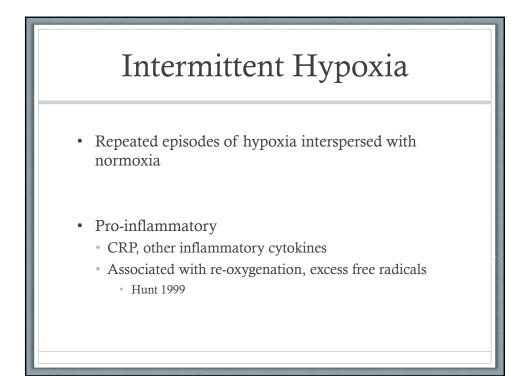


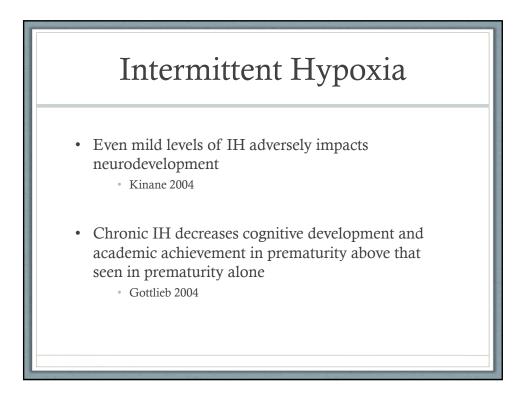


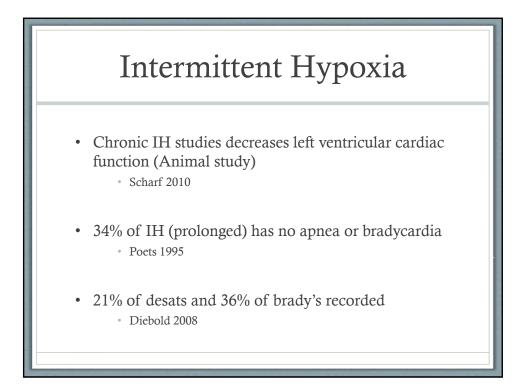


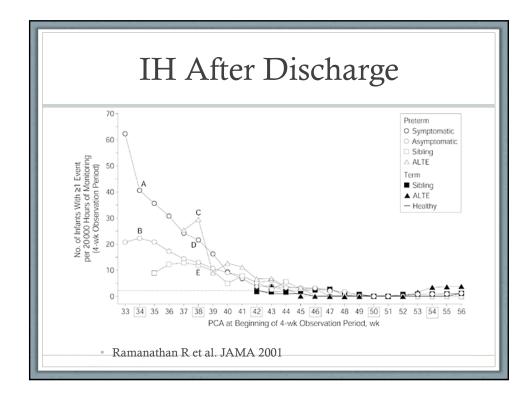


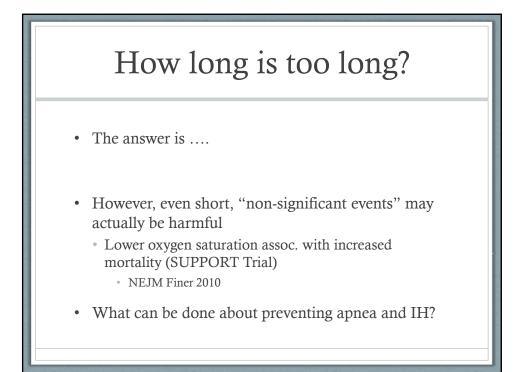


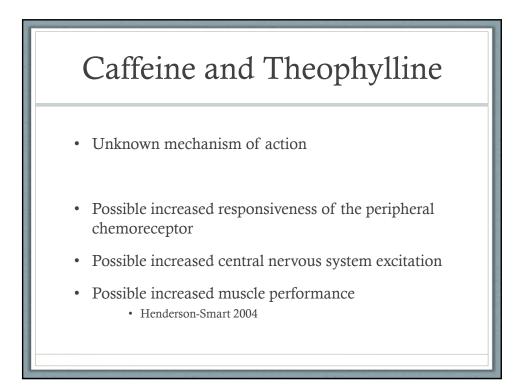


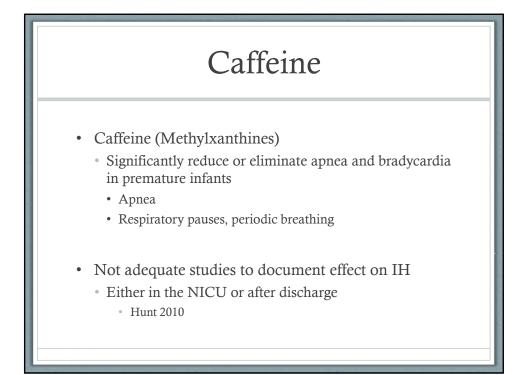


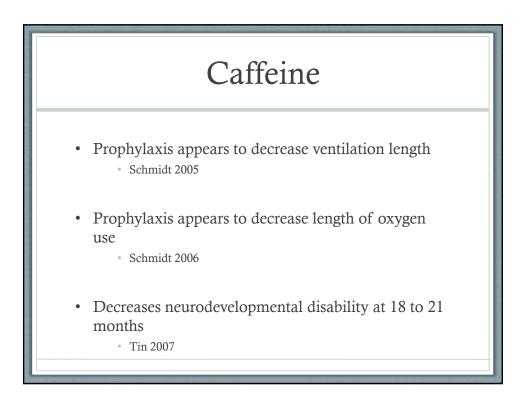


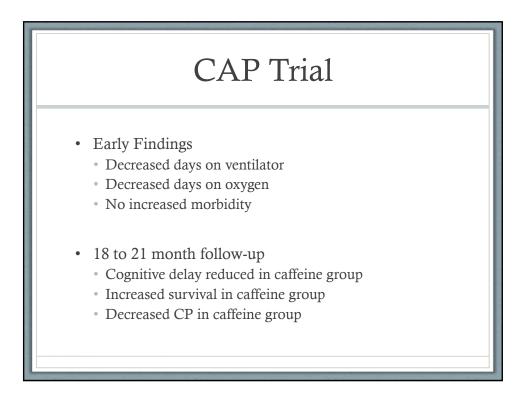


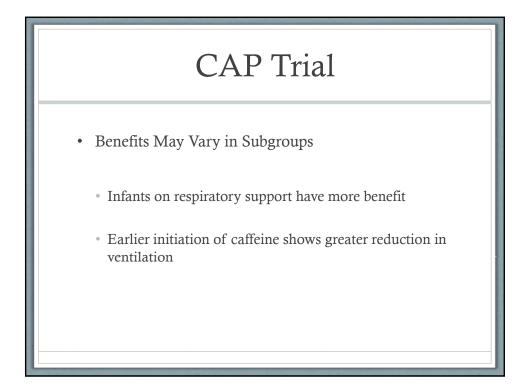


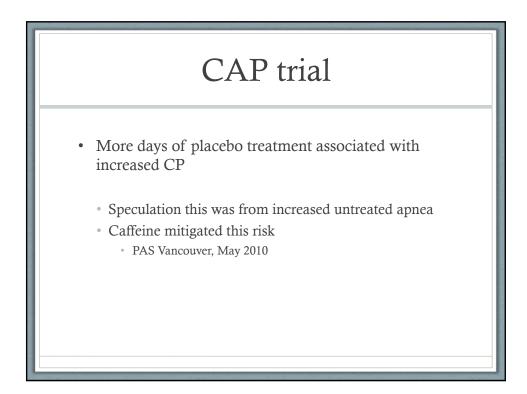


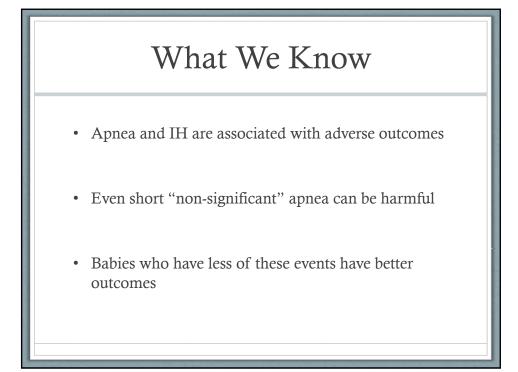


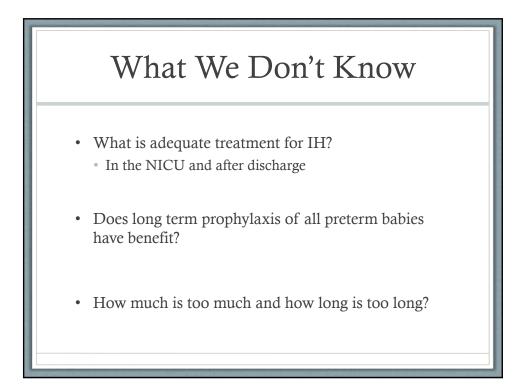


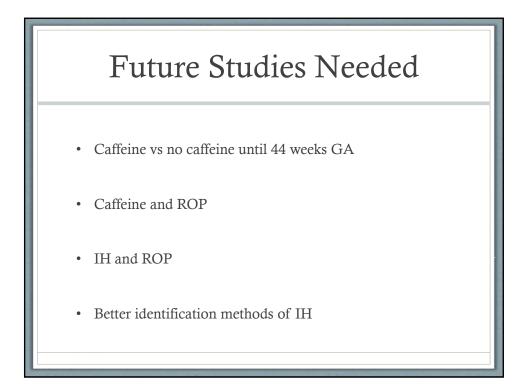


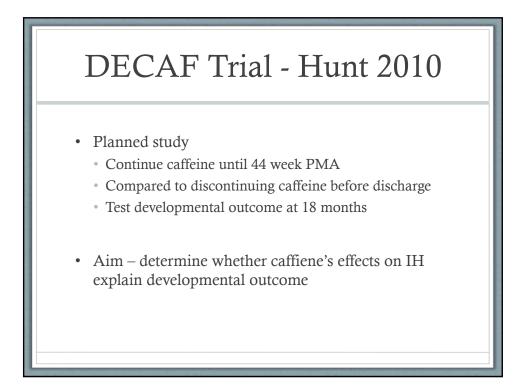


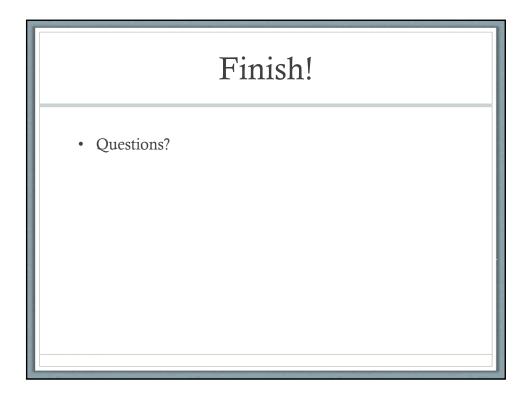



Caffeine and CAP trial


- Caffeine for Apnea (CAP)
 - 1860 infants 500 to 1,250 grams at birth
 - Randomized to placebo or caffeine
 - Discontinued when treatment no longer necessary
- Aim
 - Define AOP treatment *without* methylxanthines
 - Define long term morbidity of methylxanthines



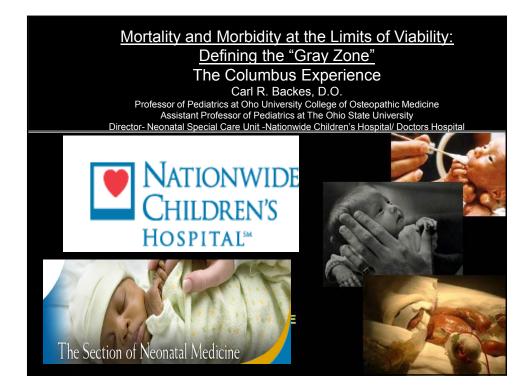




AMERICAN COLLEGE OF OSTEOPATHIC PEDIATRICIANS

SUNDAY, OCTOBER 24, 2010

PERINATAL / NEONATAL

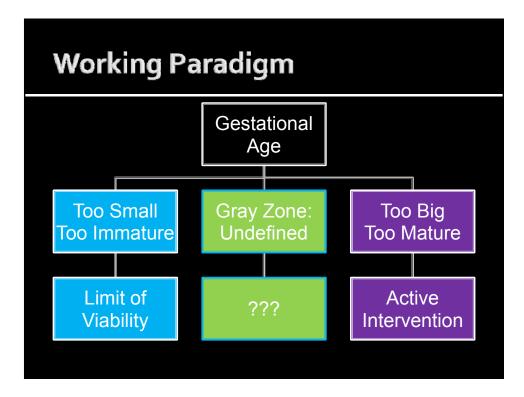

Moderator – Holly Payne, DO, MS, FACOP Co-Moderator (BOT Member) – James Kirk, DO, FACOP

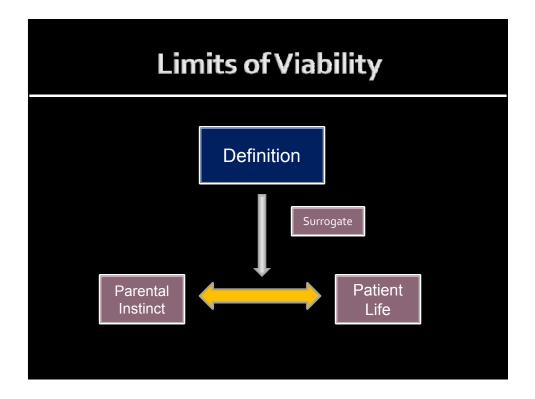
4:00 pm - 5:00 pm

Assessing Limits of Viability

Carl Backes, DO, FACOP, FAAP

Objective: Upon completion of this lecture, the participant will be able to present national and international survival of the extreme preterm infant, discuss morbidity of extreme problem infants, and discuss changing attitudes of extreme preterm resuscitation.

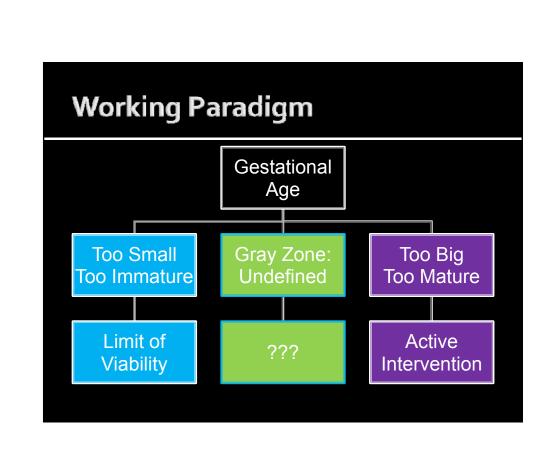

Goals in Approach to Care

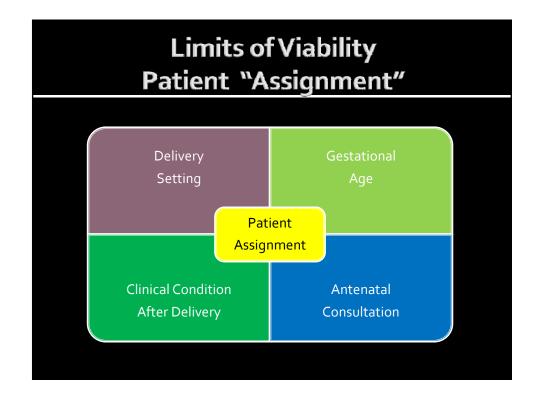

Minimize both undertreatment and overtreatment of the extremely premature infant

Goals of Presentation

- Controversial Topic
- Review National and Regional Data: Mortality and Morbidity
- To Discuss the "Columbus Culture" and Impact on Internal Data
- Suggest Possible Paradigm

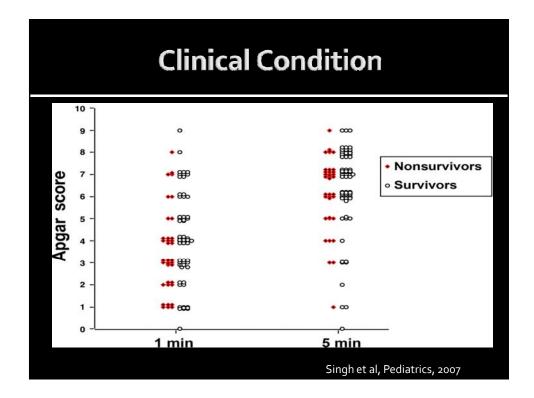
Governing Bodies

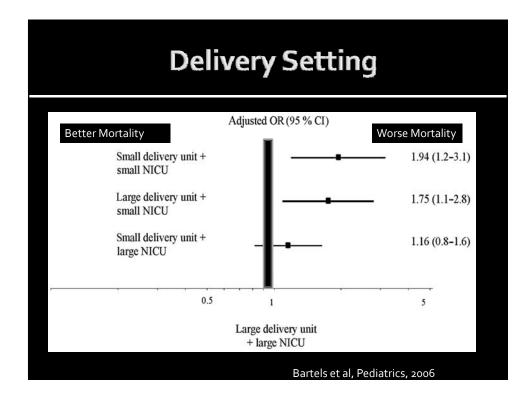

 The <u>World Health Organization (WHO)</u> places 25 weeks of gestational age as potential lower limit of viability

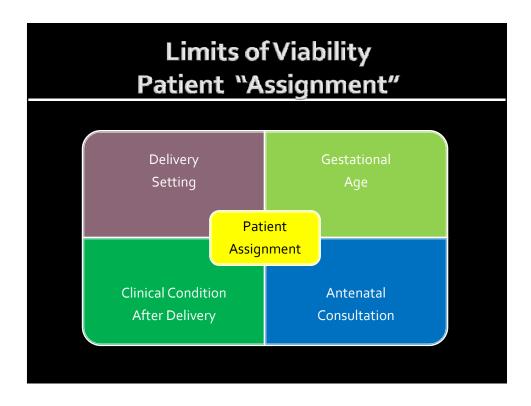


 The European Association of Perinatal Medicine (EAPM): lower limits of viability "from 24 completed weeks gestation onward..."

 The <u>American Academy of Pediatrics (AAP</u>) suggests non-initiation of resuscitation for newborns of less than 23 weeks gestational age and/or 400 grams in birthweight is appropriate


Antenatal Consultation


Gestational Age

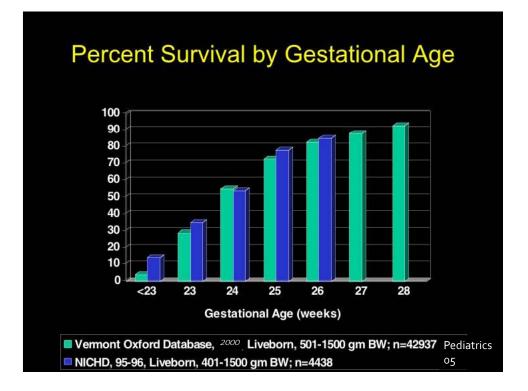

Additional Factors

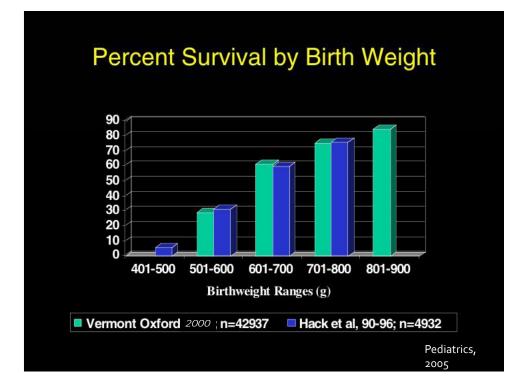
- Antenatal Steroids
- Female Sex
- Singleton Gestation
- Increased Birth Weight (100g increments)

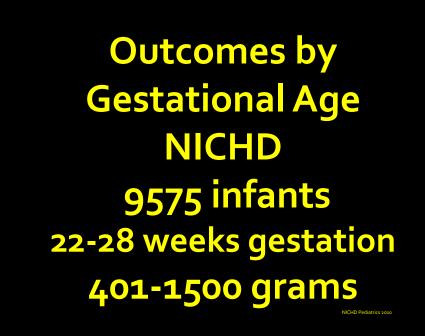
Tyson et al, NEJM, 2007

2007	_	24 weeks	
1980's	-	26-27 weeks	
1960's		30-31 weeks	
1940's		32-33 weeks	

Data from past decade suggest *lower limit* of viability is now 22-23 weeks


* North America


Major sources of data


- Vermont Oxford Network
 - 557 participating NICU's, 86% US
 - 42937 infants 500-1500 g in 2005
 - Data on >50% all infants <1500 g born in US each year
 - No post-discharge followup
- NICHD
 - 12 academic NICUs
 - 2478 infants < 1000 g born 93-94; 1480 survivors at 18 mos
 - 78% 18-22 mo followup
 - (also mortality data for 4438 infants \leq 26 wks born 95-96 in 14 centers)
- EPICure Study
 - All 276 delivery units UK/Ireland
 - All 1185 liveborn infants <26wks gestation born March-Dec 1995
 - 811 survived to NICU admit, 308 survivors at 30 months
 - 92% 30 month and 78 % 6 year followup

Major sources of data

- NICHD
 - 20 Academic NICU's
 - 9575 infants
 - Gestational age 22-28 weeks
 - Birth weight 401-1500 grams
 - Born 1-1-03 to 12-31-07

22 weeks (421 infants)

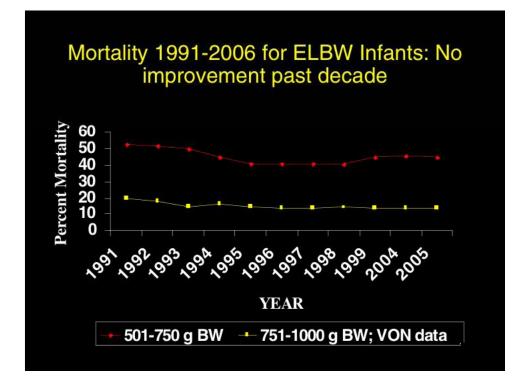
Intervention Survival to discharge 6% Death < 12 hours</p> 85% Antenatal steroids 13% Cesarean Section 7% Delivery room intubation 19% Surfactant therapy 17% Mechanical ventilation @ 24 hours 96% CPAP @ 24 hours 0%

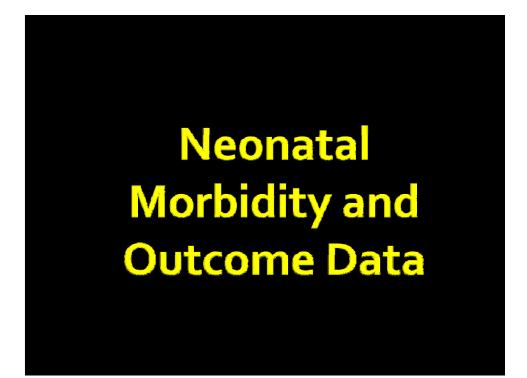
NICHD Pediatrics 2010

23 weeks (871 infants)

Intervention Survival to discharge 26% Death < 12 hours</p> 43% Antenatal steroids 53% Cesarean Section 24% Delivery room intubation 68% Surfactant therapy 63% Mechanical ventilation @ 24 hours 94% 3% NICHD Pediatrics 2010 CPAP @ 24 hours

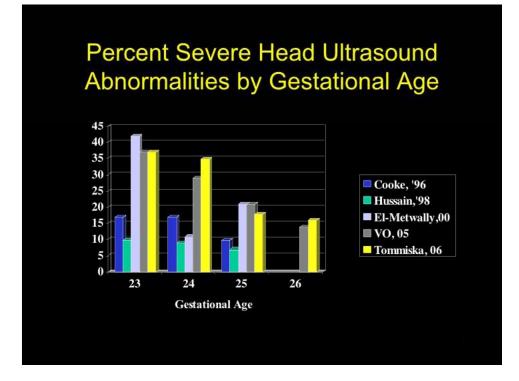

24 weeks (1370 infants)

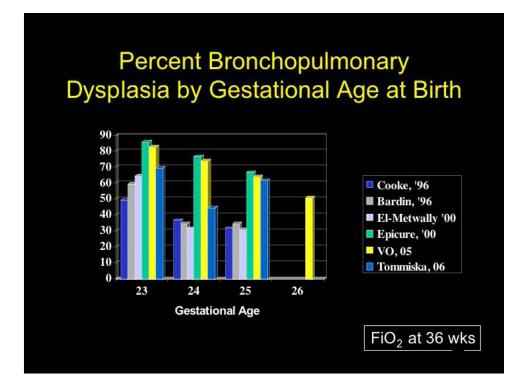

Intervention Survival to discharge 55% Death < 12 hours</p> 11% Antenatal steroids 85% Cesarean Section 60% Delivery room intubation 87% Surfactant therapy 90% Mechanical ventilation @ 24 hours 89% CPAP @ 24 hours 8% NICHD Pediatrics 2010



28 weeks (2001 infants)

Intervention Survival to discharge 92% Death < 12 hours</p> 1-2% 87% Antenatal steroids Cesarean Section 68% Delivery room intubation 47% Surfactant therapy 65% Mechanical ventilation @ 24 hours 40% CPAP @ 24 hours 38% NICHD Pediatrics 2010


Difficulties

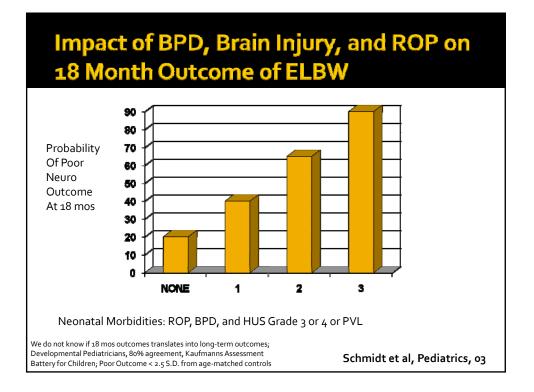

- Lack of universally acceptable definition of "quality of life" has resulted in difficulties in interpreting long-term neurodevelopmental outcomes
- Outdated findings: changes in clinical practice outpace timeframe which long-term data can be collected and published

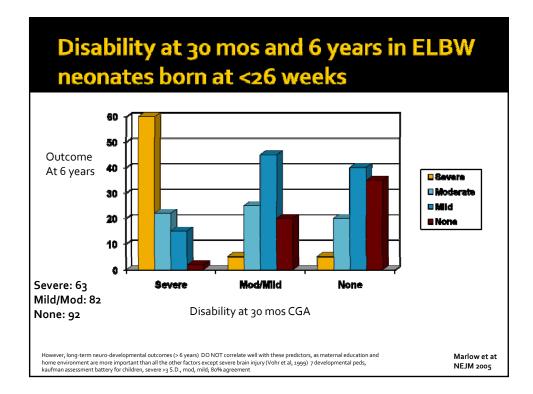
Morbidity in Survivors

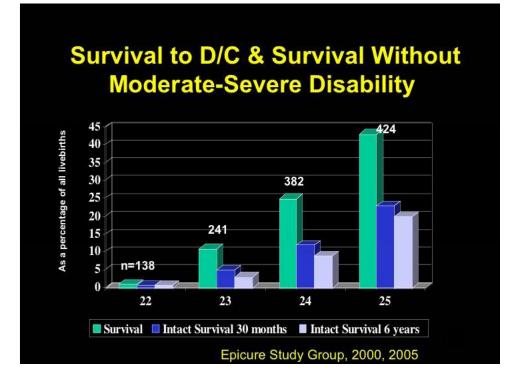
Caveats

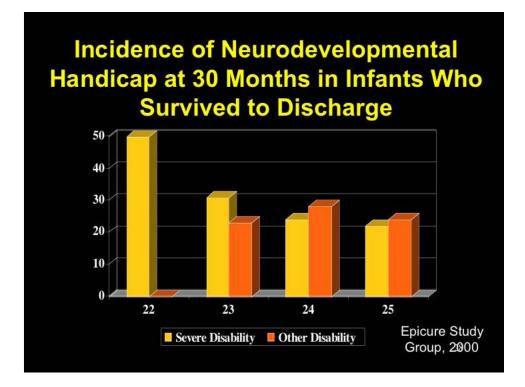
- Moving target
- Very little data with stratification by small weight and gestational age groups
- Variances in definitions of morbidities
- Do early morbidities predict very late outcome or quality of life?

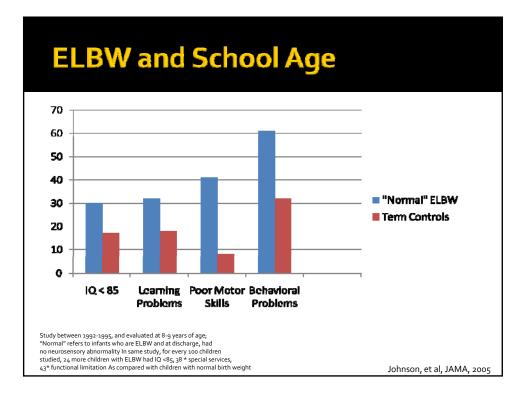
Complications by Gestational Ages NICHD 9575 infants 9575 infants 22-28 weeks gestation 401-1500 grams

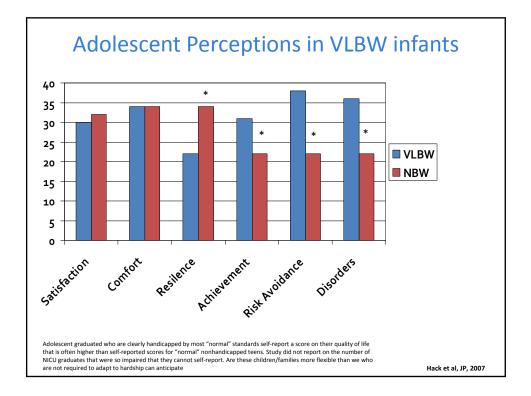

22 weeks (421 infants) Early onset sepsis 6% 58% 96% 50% Late onset sepsis ROP ROP treatment Survival with morbidityMedian length of hospitalization 100% 20.1 weeks NEC Medical 67% Surgical 33% PDA Indocin 82% Surgical Tx 50% 30% IVH- Grade IV BPD Severe 56%

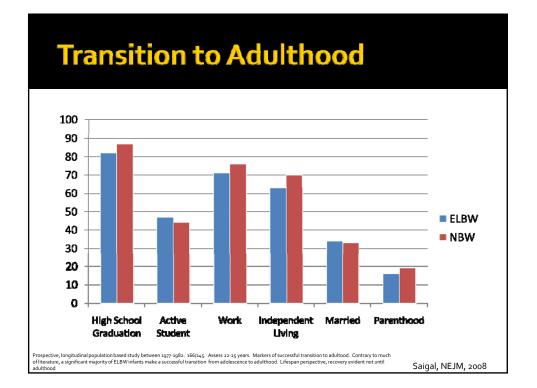

NICHD Pediatrics 2010

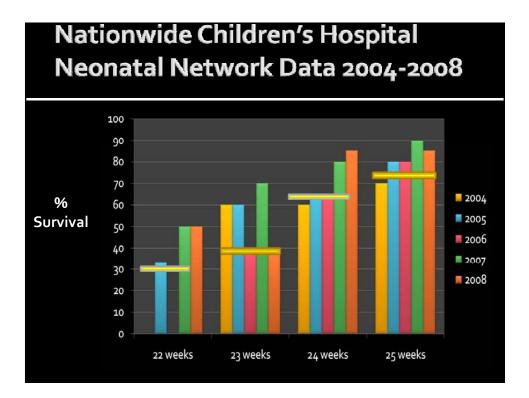

23 weeks (871 infants)			
 Early onset sepsis Late onset sepsis ROP ROP treatment Survival with morbidity Median length of hospitalization NEC 	4% 62% 88% 40% 92% 18.3 weeks		
 Medical Surgical PDA 	31% 69%		
 Indocin Surgical Tx IVH- Grade IV BPD Severe 	73% 43% 21% 39% NICHD Pediatrics 2010		

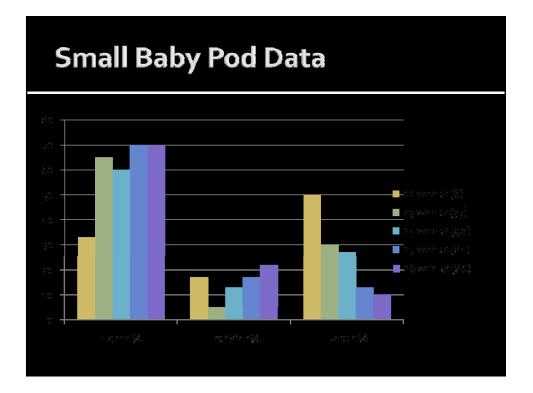

24 weeks (1370 infants)			
 Early onset sepsis Late onset sepsis ROP ROP treatment Survival with morbidity Median length of hospitalization NEC 	4% 55% 89% 35% 91% 16.7 weeks		
 Medical Surgical PDA 	39% 61%		
 Indocin Surgical Tx IVH- Grade IV BPD Severe 	76% 40% 14% 37% NICHD Pediatrics 2010		

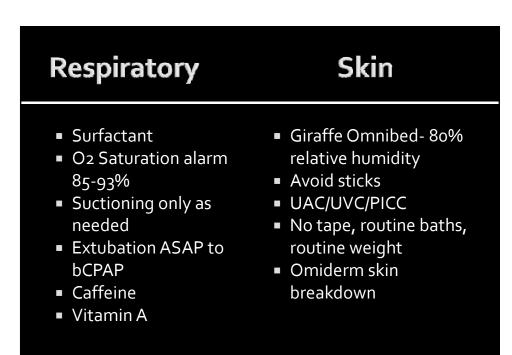

28 weeks (2001 infants)			
 Early onset sepsis Late onset sepsis ROP ROP treatment Survival with morbidity Median length of hospitalization NEC 	1% 20% 32% 2% 43% 9.0 weeks		
 Medical Surgical PDA 	38% 42%		
 Indocin Surgical Tx IVH- Grade IV BPD Severe 	67% 12% 3% 8% NICHD Pediatrics 2010		










Problems in Predicting Long-Term Outcome

- Adverse short and medium term neurodevelopmental outcomes in ELBW infants correlate with early neonatal morbidities
- However, *later* neurodevelopmental outcomes <u>do not</u> correlate very well with these predictors; <u>maternal education & home</u> <u>environment</u> are more important than all factors except severe brain injury

Small Baby Protocol <27 weeks NCH NICU First Week of Life

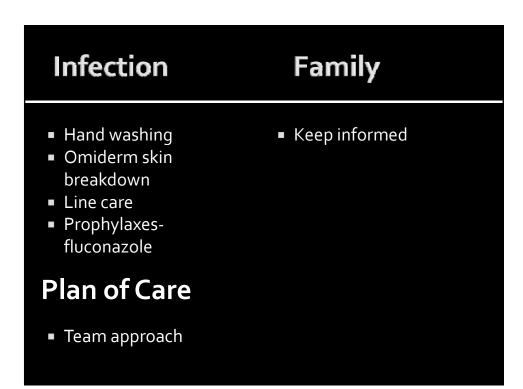
Development

PDA

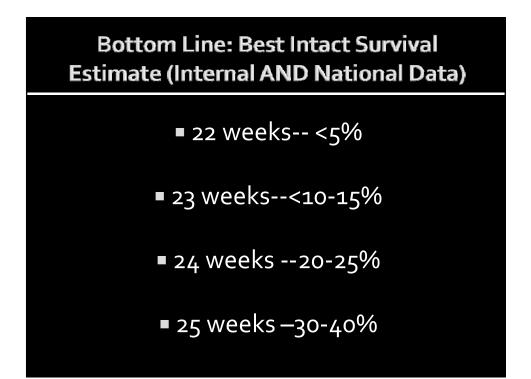
- IVH- avoid blood pressure fluctuations
- Head- midline position
- Kangaroo care after 72 hours
- Treatment- indocin, ibuprofen, ligation

Cardiovascular

- MAP-> 25 mmHg- Avoid rapid changes
- Monitor urine output and perfusion
- Treat
 - Saline bolus slow 10ml/kg
 - Dopamine 3-5 micrograms/kg/min
- Initial fluid rate 100-120 ml/kg/ day Blood out – consider
- **PRBC** replacement
- Avoid bladder bladder


IV + Dextrose containing fluids

Nutrition

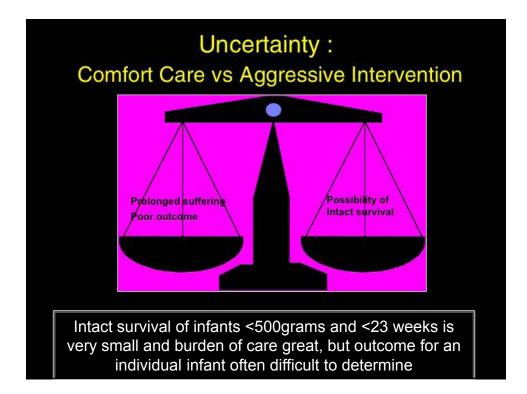

- + Sodium after 2-3 days
- + Protein- ASAP + Intralipids
- Trophic Feeds
 - + as soon as feasibleusually day 3 -10-20 ml/kg/ day without advancing + breast milk
 - + no glycerin
 - suppositories

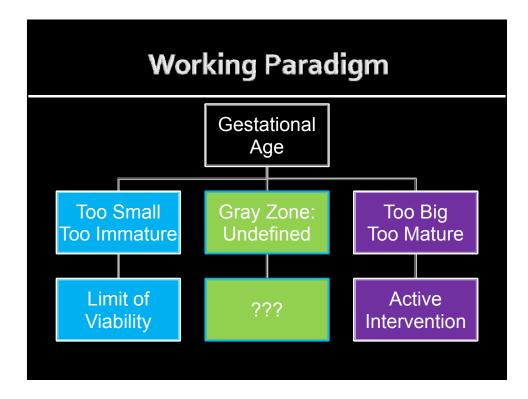
Neurologic/ Pain Laboratory

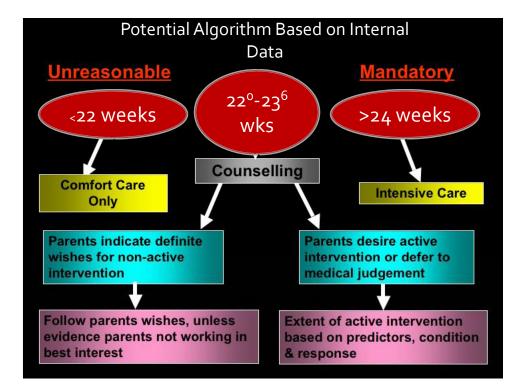
- Head ultrasound day 7 Limit lab draws
 14
- Head circumference 7 and weekly
- Pain control

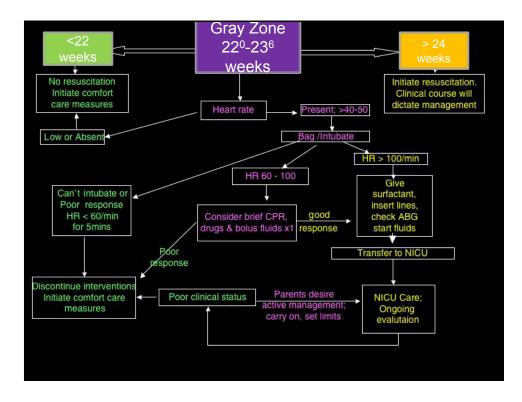
Who decides regarding intervention in the "Gray Zone"?

The AAP and ACOG all have issues statements (1997, 2002, 2008) supporting the primary of <u>parental decisions</u> for infants at the limits of viability



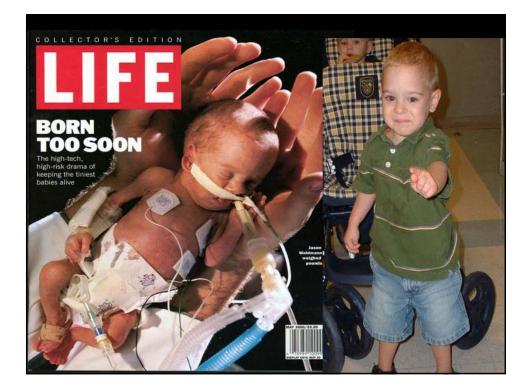

Choices in decision making


- Delegate all decision-making responsibilities to physician
 - Parental role discounted
- Defer all decisions making to parents
 - Physician is a technician
 - Guilt/overwhelm parents
- Collaborate with parents in the decision making process
 - Independent obligations of parents and physicians to act in child's best interest


What Should We do

- Understand our role as the physician in the decision process for the ELBW infant
- Advocate for the resources for reliable, up-todate data regarding burden, benefit and costs of treatment
- Commit to presenting this information to parents as accurately and objectively as possible





MONDAY, OCTOBER 25, 2010

Moderator – Edwin Spitzmiller, DO, FACOP Co-Moderator (BOT Member) – James E. Foy, DO, FACOP

AOA Registration
AOA Opening Session/Keynote Address
Vision Screening Update and to Refer or Treat? Kenneth P. Adams, DO, JD
Sexual Exploitation – What It Is and What It Isn't Marty Klein, PhD
Alumni Lunches
What is a Meaningful Use of Electronic Information as Directed by the American Recovery and Investment Act? Michael G. Hunt, DO, FACOP, FAAP
State of the College Margaret Orcutt Tuddenham, DO, FACEP, FACOP
Break
Discharge Planning for NICU Patients Ronald S. Cohen, MD
Medical Information: Is it Really Portable? Michael G. Hunt, DO, FACOP, FAAP
CME Committee, Pediatric Program Director and Vaccine Committee Meetings

MONDAY, OCTOBER 25, 2009

Moderator – Edwin Spitzmiller, DO, FACOP Co-Moderator (BOT Member) – James E. Foy, DO, FACOP

9:30 am - 10:30 am

Vision Screening Update and to Refer or Treat?

Kenneth P. Adams, DO, JD

Objective: Upon completion of this lecture, the participant will understand why vision screening, what screening is recommended, how to screen, and eye exam and ophthalmology pearls.

MONDAY, OCTOBER 25, 2009

Moderator – Edwin Spitzmiller, DO, FACOP Co-Moderator (BOT Member) – James E. Foy, DO, FACOP

10:30 am - 11:30 am

Sexual Exploitation – What It Is and What It Isn't

Marty Klein, PhD

Objective: Upon completion of this lecture, the participant will be able to learn diagnostic criteria for pursuing possible sexual exploitation, learn key characteristics of healthy childhood sexual expression, and learn how adults can support the development of healthy childhood sexual expression.

MONDAY, OCTOBER 25, 2009

Moderator – Edwin Spitzmiller, DO, FACOP Co-Moderator (BOT Member) – James E. Foy, DO, FACOP

1:00 pm - 2:00 pm

What is a Meaningful Use of Electronic Information as Directed by the American Recovery and Investment Act?

Michael G. Hunt, DO, FACOP, FAAP

Objective: Upon completion of this lecture, the participant will have a familiarity with the pros and cons of electronic information, know the terminology and resources for transmitting information, define discrete data, guage difficulties of the use of electronic information, and define/describe what is needed to implement the EMR to meet the incentive requirements.

MONDAY, OCTOBER 25, 2009

Moderator – Edwin Spitzmiller, DO, FACOP Co-Moderator (BOT Member) – James E. Foy, DO, FACOP

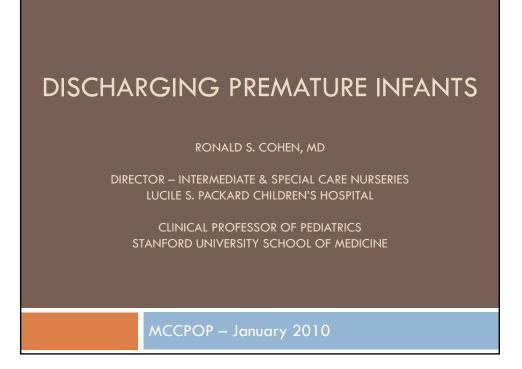
2:00 pm - 2:45 pm

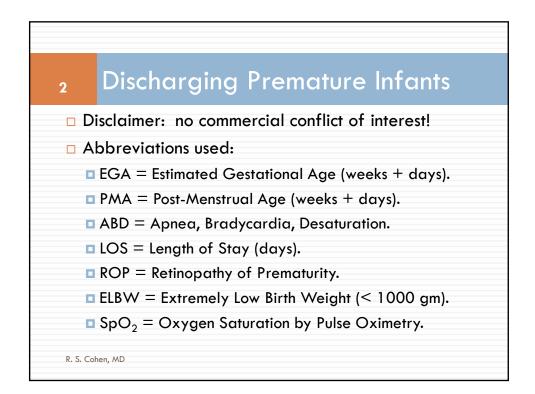
State of the College

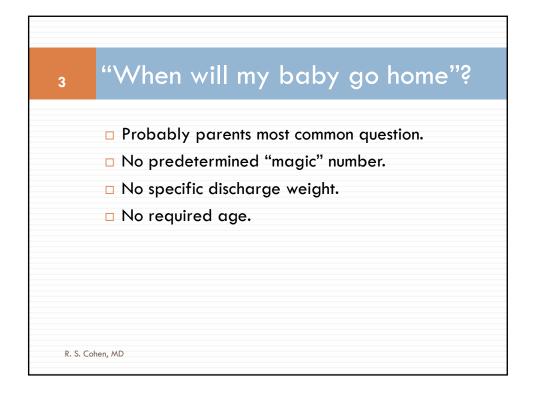
Margaret Orcutt Tuddenham, DO, FACEP, FACOP

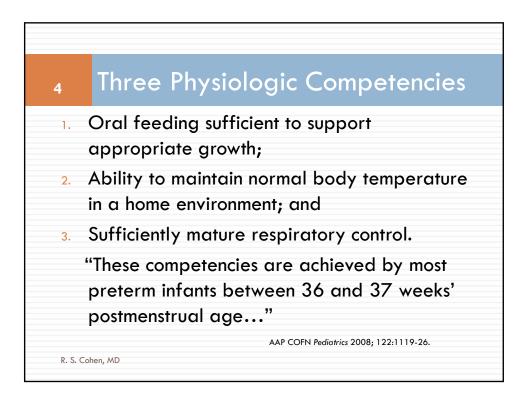
Objective: Upon completion of this lecture, the participant will become aware of and invited to participate in the short term, medium term and long term goals of the college.

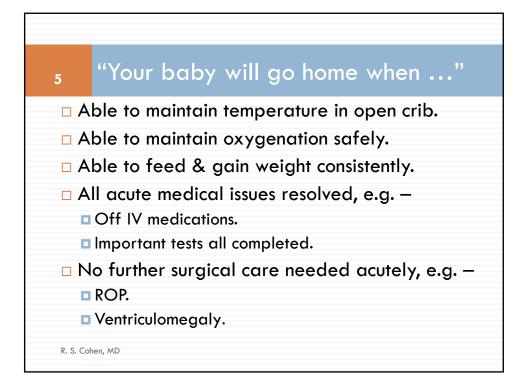
MONDAY, OCTOBER 25, 2009

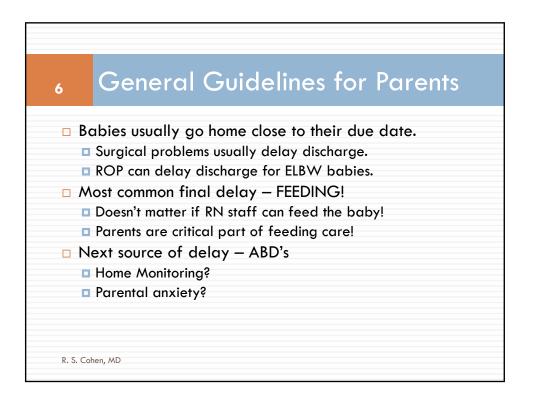

Moderator – Edwin Spitzmiller, DO, FACOP Co-Moderator (BOT Member) – James E. Foy, DO, FACOP

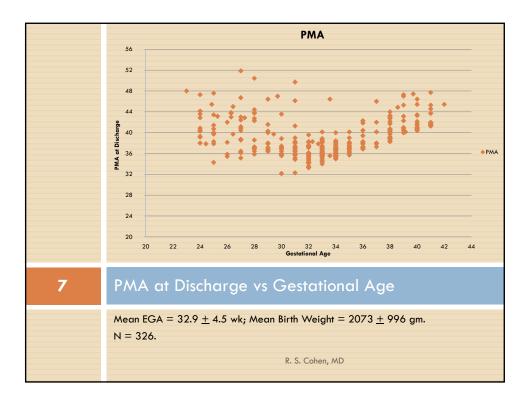

3:00 pm - 4:00 pm

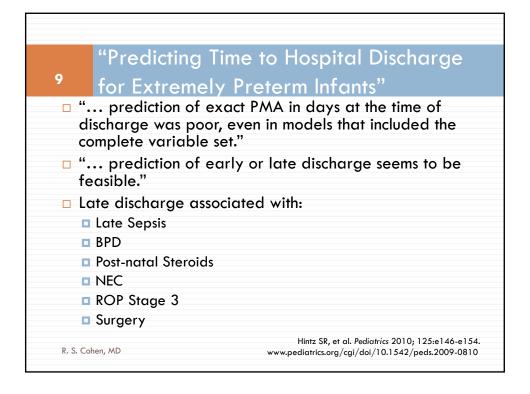

Discharge Planning for NICU Patients

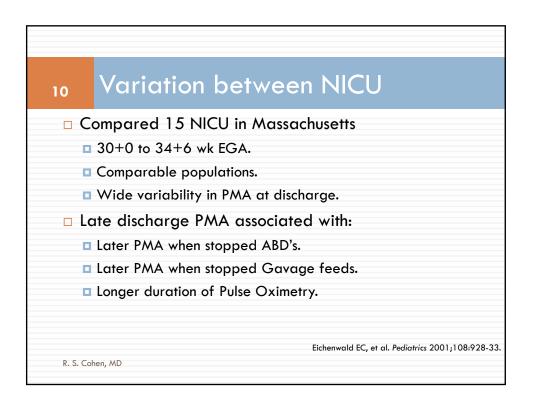

Ronald S. Cohen, MD

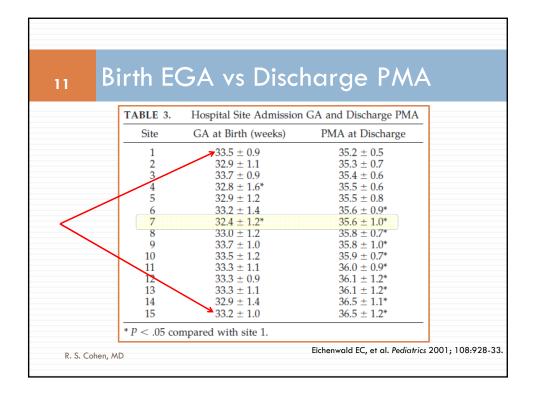

Objective: Upon completion of this lecture, the participant will have a better understanding of the problems facing the NICU graduate affecting their transition from hospital to home care, have a greater knowledge of the possible issues facing NICU graduates and their caregivers once they come home, and provide an up-date on the outcome of NICU graduates.

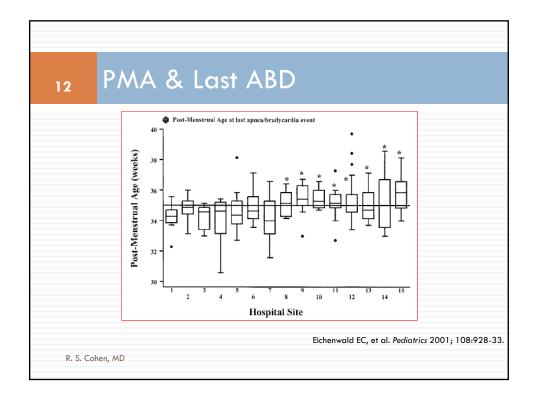


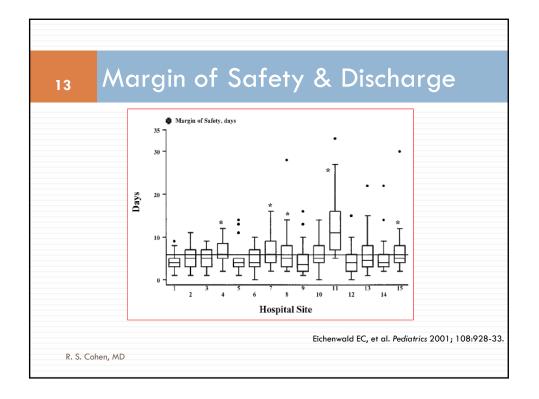


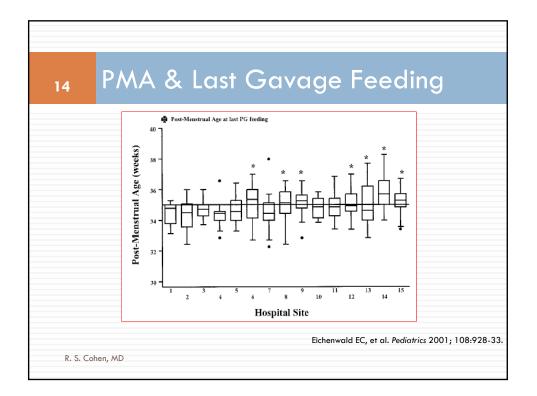


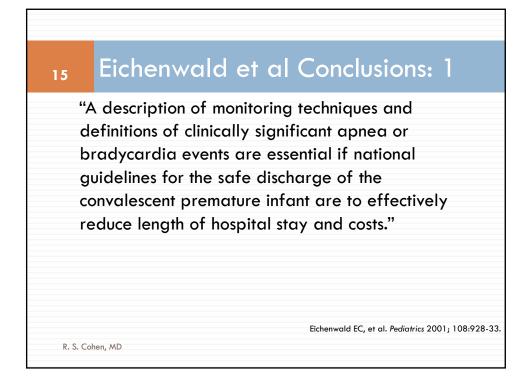


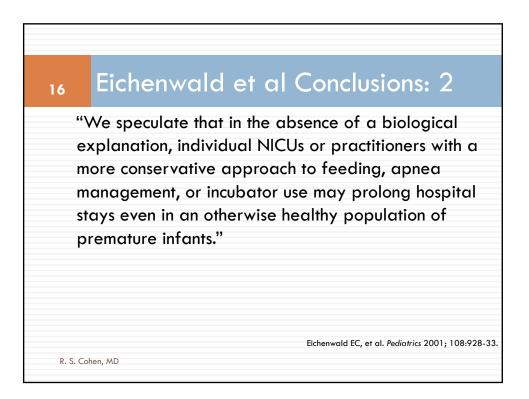


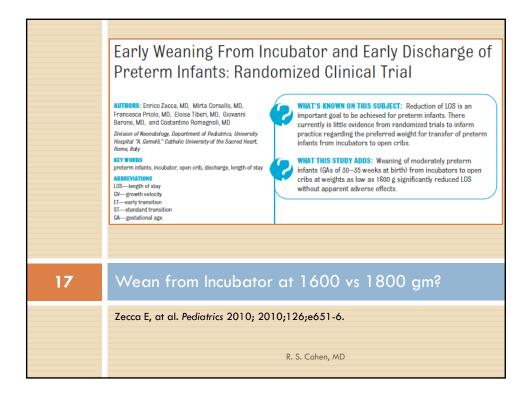


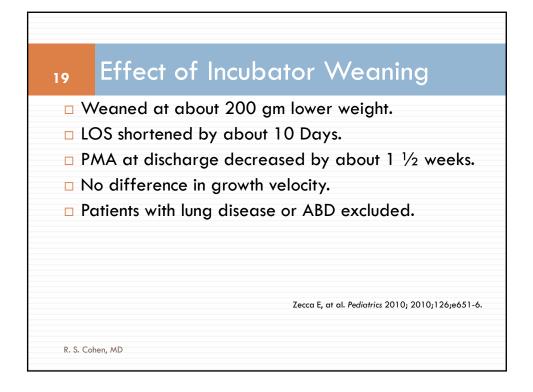


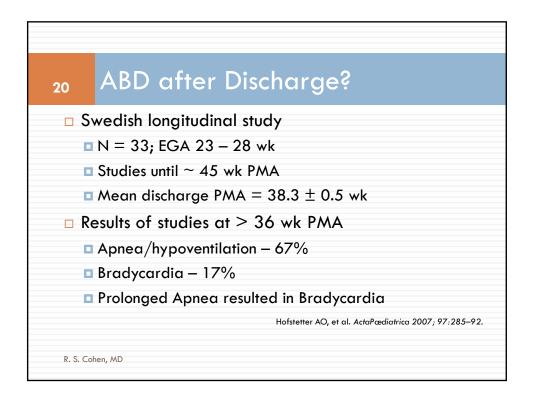


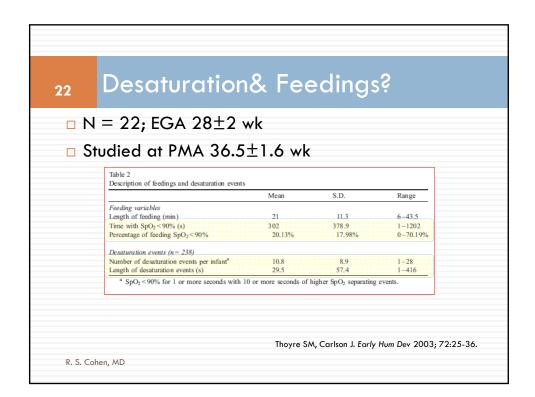


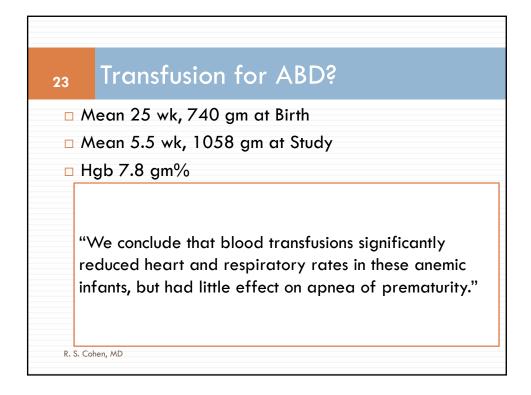


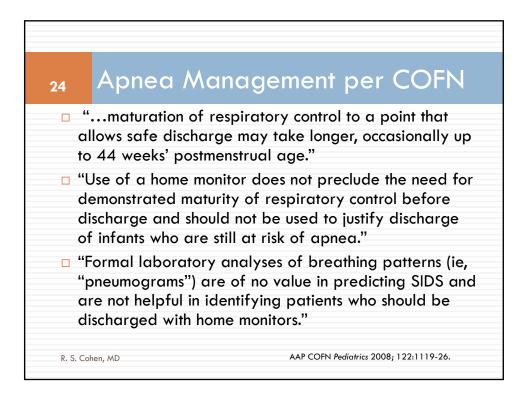


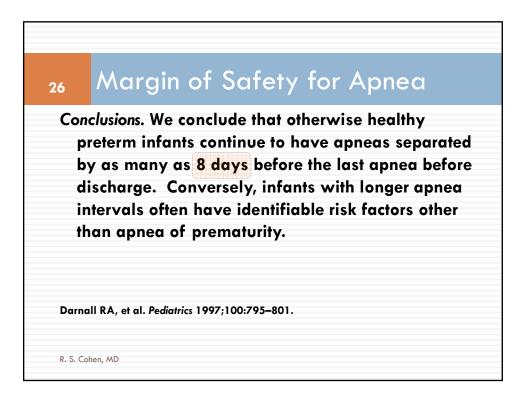


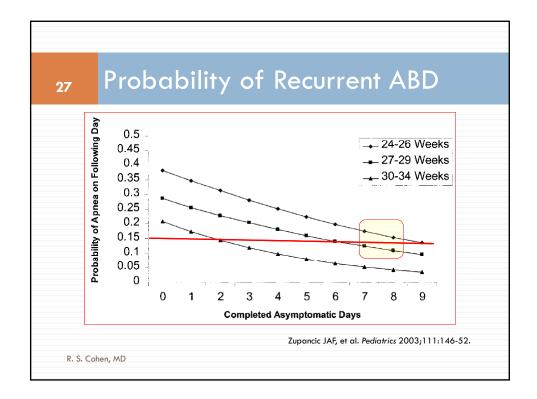


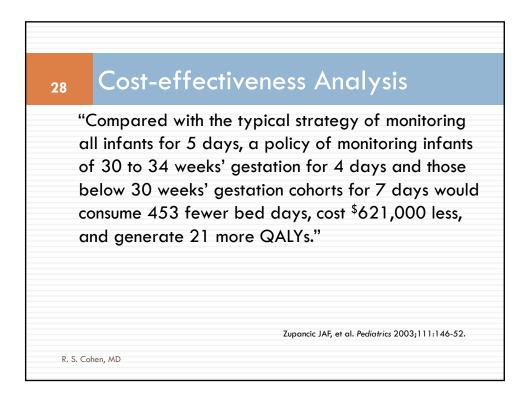


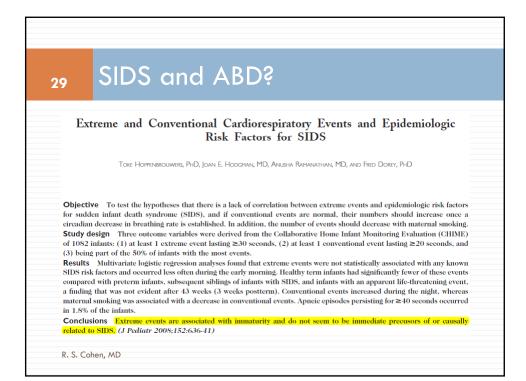

Irly Incub	ator W	/ean	
TABLE 1 Baseline Characteristics (of Studied Newborns		
	ET Group	ST Group	p
GA, mean ± SD (range), wk	32.2 ± 1.7 (27-35)	32.0 ± 1.7 (27-35)	.53
Birth weight, mean ± SD (range), g	1378 ± 208 (840-1590)	1360 ± 188 (1010-1595	
Male. n (%)	17 (36)	22 (47)	.26
Small for GA, n (%)	15 (32)	13 (28)	.82
TABLE 2 Comparison of Relevant D	ata From Incubator Weaning	to Discharge Home	
	ET Group	ST Group	P
Weight at transition to open crib,	1638 ± 25 (1600-1680)	1851 ± 29 (1800-1890)	<.0001
mean ± SD (range), g	1000 ± 20 (1000-1000)	1631 ± 28 (1600-1680)	<.0001
Time spent in open crib, mean ± SD	6 ± 3 (2-17)	6 ± 2 (2-15)	.51
(range), d	0 = 0 (2 11)	0 = 1 (1 · 10)	
LOS, median (interquartile range), d	23.5 (19-30.5)	33.0 (27-44.5)	.0002
Weight at discharge, mean ± SD	1842 ± 126 (1680-2315)	2067 ± 134 (1855-2410)	<.0001
(range), g			
Postmenstrual age at discharge, mean ± SD (range), wk	35.6 ± 1.5 (33-41)	37.0 ± 1.1 (34–40)	.0006
	$19 \pm 5 (12 - 39)$	22 ± 16 (3-55)	.15
Individual amount of breastfeeding	43 ± 31	46 ± 29	.60
at discharge, mean ± SD, %			
GV, mean ± SD (range), g/kg per d Individual amount of breastfeeding at discharge, mean ± SD, %		46 ± 29	.60

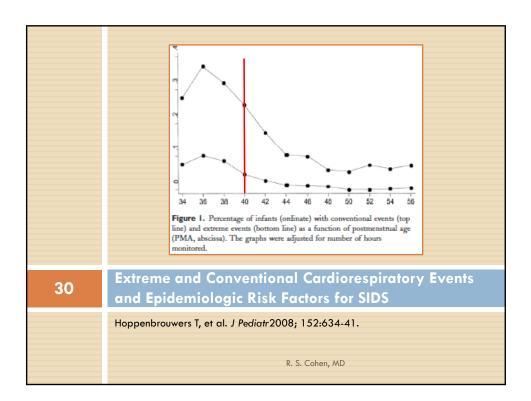



21	eriodic Breathing	aner Discharge
	Table 1 Patient Characteristics	
	Patient characteristics $(N = 28)$	Median (range)
	Gender (M/F) Birth weight (g) Weight at recording (g) Gestational age (weeks) Corrected gestational age at recording (wee	$ \begin{array}{r} 15:13\\ 1660 (1062-2612)\\ 2042 (1717-2495)\\ 32 (27-34)\\ (35 (33-37)) \end{array} $
	Table 2 PB Parameters	
	PB parameters	Median (range)
	Percent PB Episodes per 100 min quiet time Mean duration of episodes (min) Duration of longest episode (min)	(13 (6.7-54.4) 10.6 (4.6-28.3) 1.2 (0.76-2.52) 4.2 (1.5-20.7)

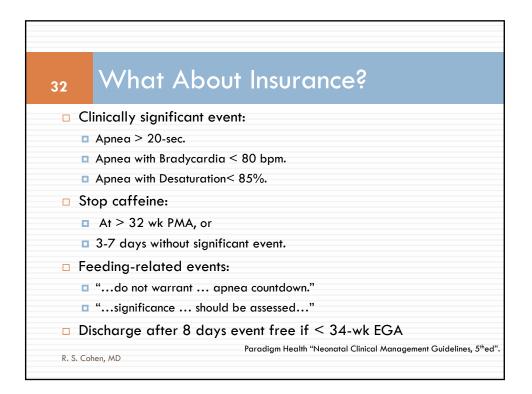


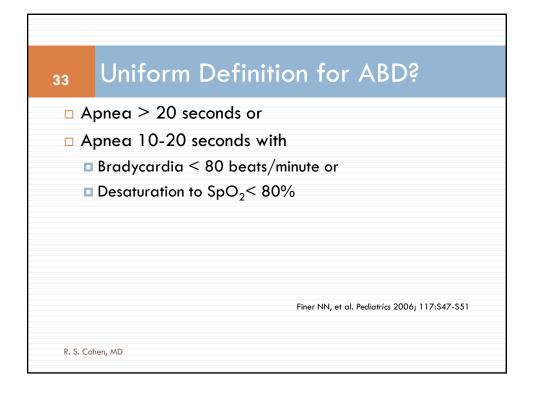


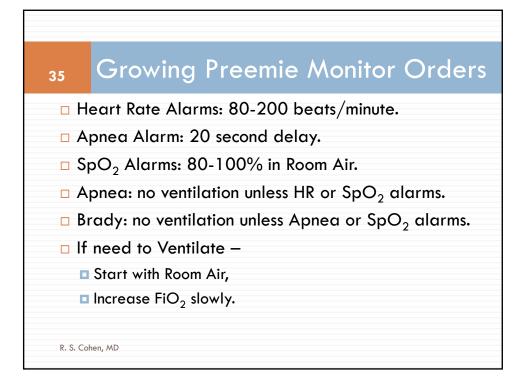


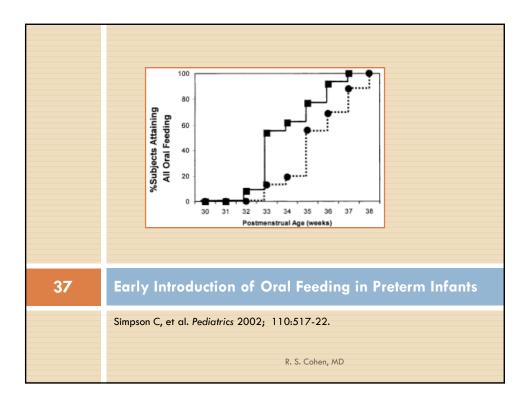

Mean ± SEM Median 25th Percentile 75th Percentile PMA off xanthines (wks) 35.3 ± 0.3 34.6 33.6 36.8 PMA on last apnea day (wks) 37.7 ± 0.3 37.1 35.4 39.4 LAD' to discharge (days) 14.8 ± 1.1 11.0 9.0 17.5 LAD' to LD (days) 4.0 ± 0.4 3.0 1.0 5.0					
PMA on last apnea day (wks) 37.7 ± 0.3 37.1 35.4 39.4 LAD' to discharge (days) 14.8 ± 1.1 11.0 9.0 17.5 LAD'I to LD (days) 4.0 ± 0.4 3.0 1.0 5.0	ABLE 3. Characteristics of Apnea in the	<i>,</i> ,	Median	25th Percentile	75 th Percentile
	PMA on last apnee day (wks) LAD-it to Lkscharge (days) LAD-it to LAD (days) LAD-2t to LAD-1 (days) Maximum interval (between 1 and LAD or between 2 and 1) LAD, day on which last apnee occurred. LAD-1, apnee day previous to day on wh	37.7 ± 0.3 14.8 ± 1.1 4.0 ± 0.4 3.3 ± 0.5 5.3 ± 0.5 ich last appea occurred.	37.1 11.0 3.0 2.0	35.4 9.0 1.0 1.0	39.4 17.5 5.0 4.0

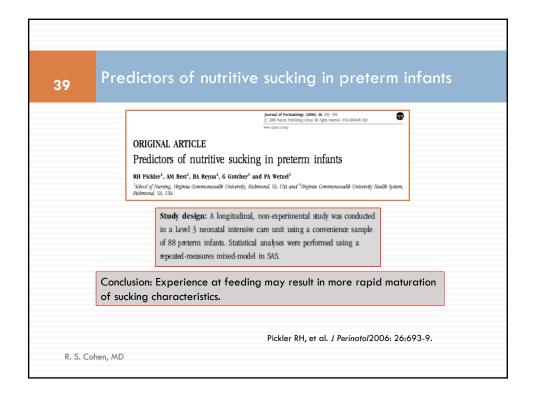


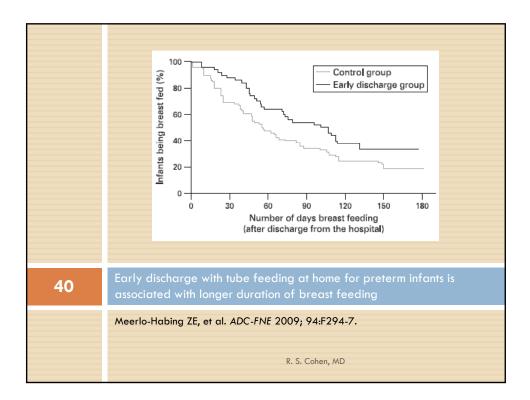


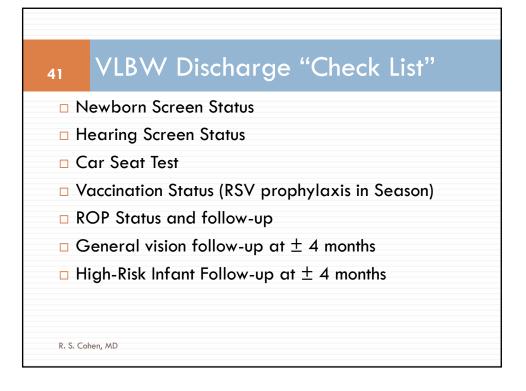







Table 1 O	utcome at 1	year in all ba	bies of 23–27 week	s gestation born	during 1990–1994
and its relat	tionship to m	ninimum and i	maximum pulse oxi	meter alarm settir	ngs ³¹
Oximeter alarm settings (%)	Number of babies admitted	Number of survivors (%)	1 year survivors Median number of days ventilated, n	Cerebral palsy, n (%)	Threshold retinopathy, n (%)
88/98*	123	65 (52.8)	21	11 (16.9)	18 (27.7)
85-95	235	128 (54.5)	16	20 (15.6)	20 (15.6)
1 84-94	84	37 (44.0)	15	6 (16.2)	5 (13.5)
70-90	126	64 (50.8)	7	10 (15.6)	4 (6.3)




Episode	Response
Apnea	Stimulate after 20 seconds, then room air breaths
Bradycardia	Stimulate only if other alarm or Heart Rate < 60
Desaturation	Stimulate first, then room air breaths, then slow O_2 increase

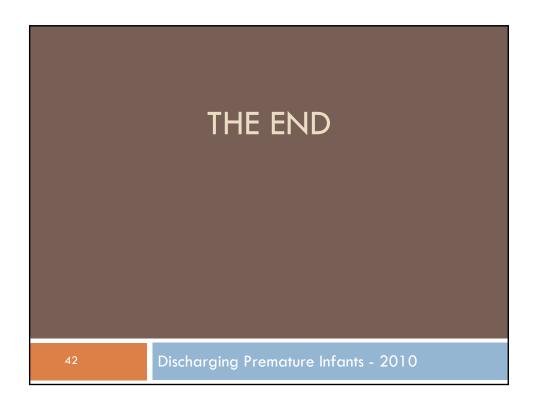


	TABLE 2. Oral Feeding Milestones				
	TABLE 2. Oral Feeding Milestones				
		Experimental	Control	P Value	
	Full tubefeeding				
	Postnatal age (d)	19.5 ± 4.7	20.4 ± 7.6	.72 .77	
	PMA (wk) Transition from tube to all oral feeding (d	30.6 ± 1.2 26.8 ± 12.3	30.5 ± 1.7 38.4 ± 14.0	<.05	
	Introduction to oral feeding (d) 26.0 ± 12.3	30.4 ± 14.0	<.00	
	Postnatal age (d)	22.9 ± 5.0	42.8 ± 11.2	<.001	
	PMA (wk)	31.1 ± 1.3	33.7 ± 0.9	<.001	
	First successful oral feeding				
	Postnatal age (d)	32.1 ± 9.9	46.9 ± 10.9	<.001	
	PMA (wk) 4 Successful oral feedings	32.4 ± 1.0	34.3 ± 0.9	<.001	
	Postnatal age (d)	43.6 ± 13.7	54.4 ± 12.6	<.05	
	PMA (wk)	34.1 ± 1.7	35.3 ± 1.4	<.05	
	All oral feeding				
	Postnatal age (d)	46.4 ± 13.9	58.7 ± 14.5	<.05	
	PMA (wk) Introduction of oral feeding to first	34.5 ± 1.6 9.3 ± 7.7	36.0 ± 1.5 3.7 ± 3.5	<.05	
	successful oral feeding (d)	9.5 ± 7.7	3.7 ± 3.5	<.05	
	First successful oral feeding to all	13.8 ± 8.8	11.9 ± 6.4	.51	
	oral feeding (d)				
	Hospital discharge				
	Postnatal age (d) PMA (wk)	57.0 ± 17.7 36.0 ± 2.1	67.0 ± 16.6 37.1 ± 1.8	.13	
		36.0 ± 2.1	37.1 ± 1.0	.15	
	Mean ± standard deviation.				
38	Early Introduction of Ore	al Feeding	in Prete	erm Infants	
	Simpson C, et al. Pediatrics 2002; 11	0:517-22.			
		R. S. Cohen, MD			

American College of Osteopathic Pediatricians

MONDAY, OCTOBER 25, 2009

Moderator – Edwin Spitzmiller, DO, FACOP Co-Moderator (BOT Member) – James E. Foy, DO, FACOP

4:00 pm – 5:00 pm

Medical Information: Is it Really Portable?

Michael G. Hunt, DO, FACOP, FAAP

Objective: Upon completion of this lecture, the participant will have a familiarity with the pros and cons of electronic information, know the terminology and resources for transmitting information, define discrete data, guage difficulties of the use of electronic information, and define/describe what is needed to implement the EMR to meet the incentive requirements.

American College of Osteopathic Pediatricians

TUESDAY, OCTOBER 26, 2010

Moderator - Judith Thierry, DO

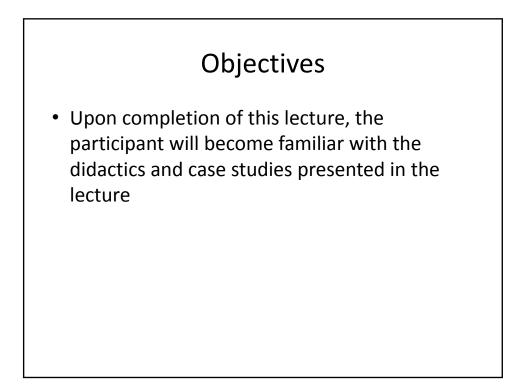
Pediatric Office Dermatology Melinda F. Greenfield, DO
AOA Town Hall Meeting
Prep for Court/Depositions Mary Angel Meyer, JD
Break
Special Needs Advocation Barbara L. Baldwin, DO, FACOP
Gastric Banding as Treatment for Adolescent Obesity Alison A. Clarey, DO
Lunch On Own/Posters and Exhibits
A Case-Based Review of Influenza James H. Brien, DO, FAAP
A Case-Based Review of MRSA James H. Brien, DO, FAAP
Optimizing Revenue in Your Pediatric Practice Mary Jean Sage, CMA-AC
CME Committee, Pediatric Education Leadership Committee, eJournal
AOA/AAOA President's Reception

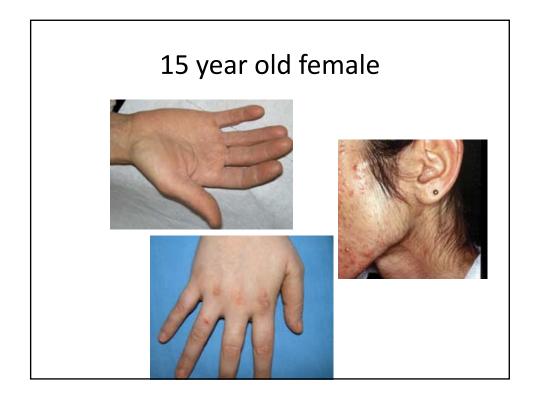
American College of Osteopathic Pediatricians

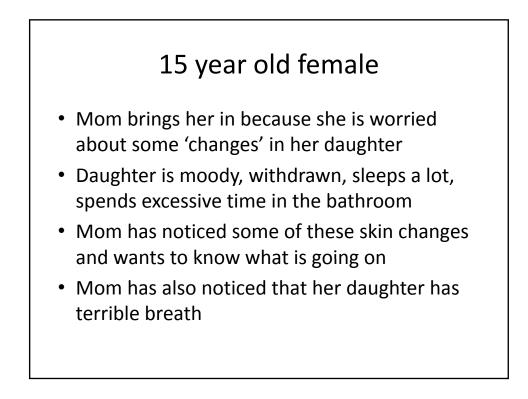
TUESDAY, OCTOBER 26, 2010

Moderator - Judith Thierry, DO

8:00 am - 9:45 am

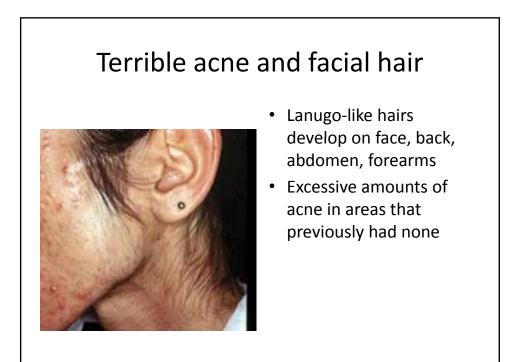

Pediatric Office Dermatology


Melinda F. Greenfield, DO


Objective: Upon completion of this lecture, the participant will understand the didactics and case studies which will be used so the participant will be able to recognize and treat or refer for, as well as updates on: Pediatric acne, hemangiomas, impetigo and some 'unusual' cases.

DERMATOLOGY FOR THE PEDIATRIC OFFICE

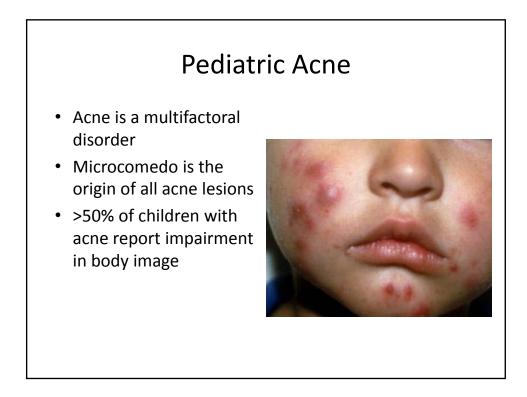
MELINDA F. GREENFIELD, DO ALBANY DERMATOLOGY CLINIC ALBANY, GEORGIA



Hands are very 'dry' and yellow-orange

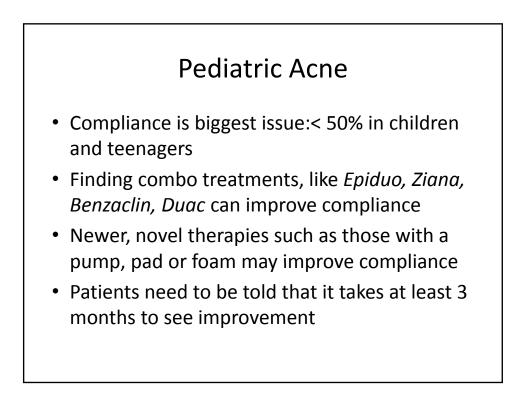
- Carotenoderma- due to increased serum carotenoids
- This patient's diet consisted of carrots, plums, pumpkin, millet and soy beans
- Asteatotic skin afflicts 70% of these patients

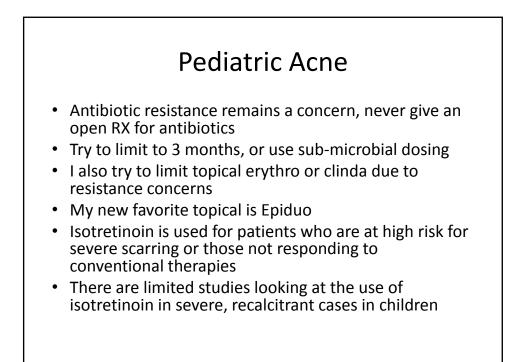
New calluses on the back of the hands

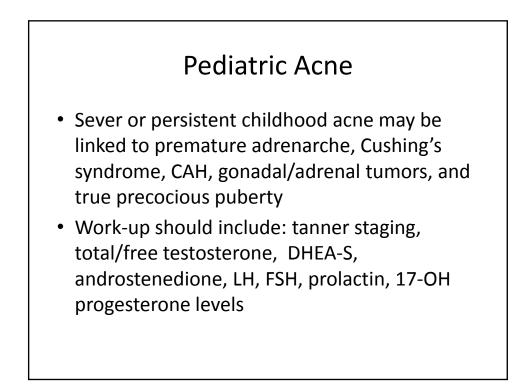


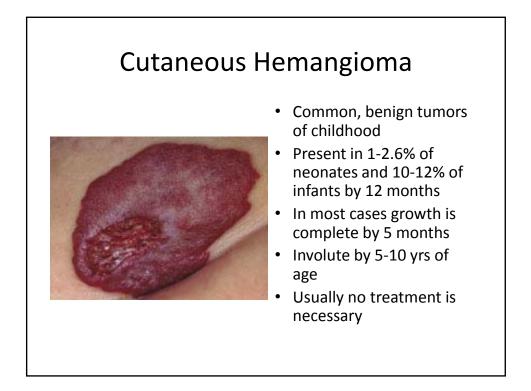
 Calluses on the hands, known as Russel's sign, are often seen

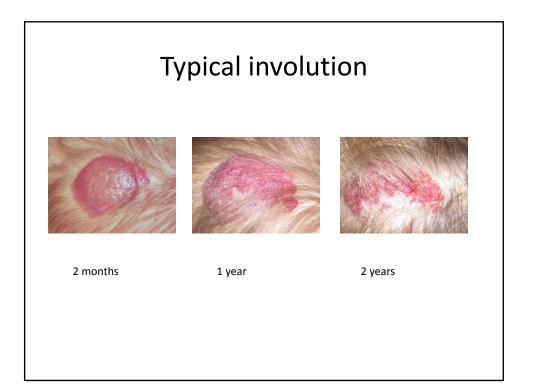
Anorexia nervosa Worldwide prevalence of 0.3% 1% adolescent girls in the USA One study of female ballet students found anorexia in 4.1% Skin signs in anorexia occur due to starvation, malnutrition, self-induced vomiting, use of diuretics and enemas along with psychiatric illness These signs usually develop when the BMI reaches 16 or less

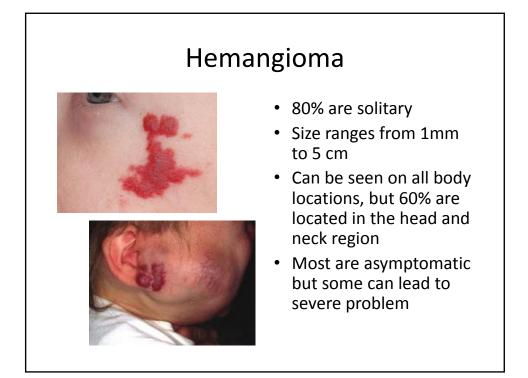

Anorexia Nervosa-skin signs

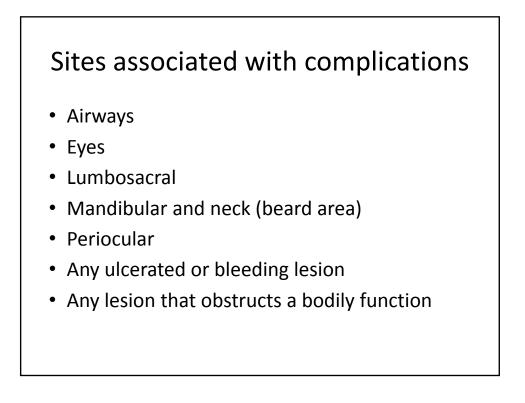

- Dry skin, follicular hyperkeratosis, carotenoderma, hyperpigmentation, acne, pruritus, lanugo-like hair, Russell's sign, dental enamel erosions....
- Prutitus increases in severity along with the decrease in BMI and will improve with proper nutrition
- All of the skin signs are reversible

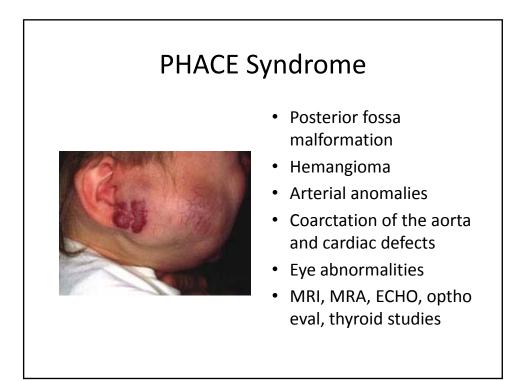



Acne-are milk and sugar to blame?


- Recent studies have linked the consumption of milk and high glycemic diets to exacerbation of acne
- Milk-may influence comedogenesis due to hormones and bovine growth hormones
- Carbohydrates-exacerbate acne via insulin production

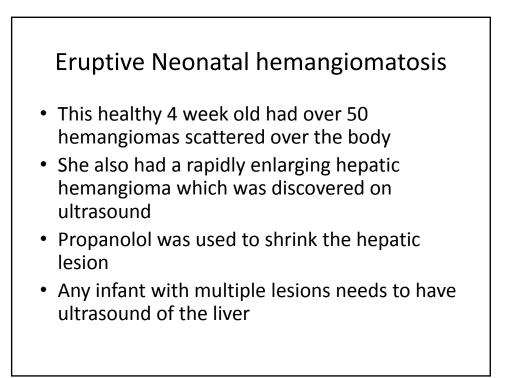


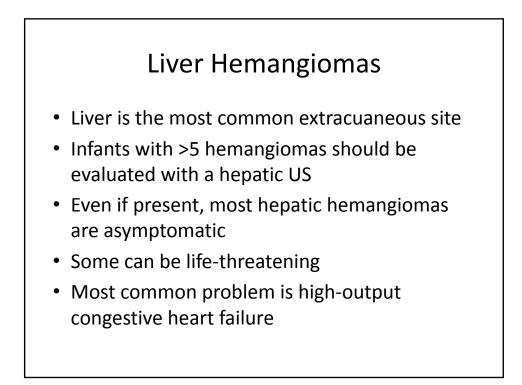




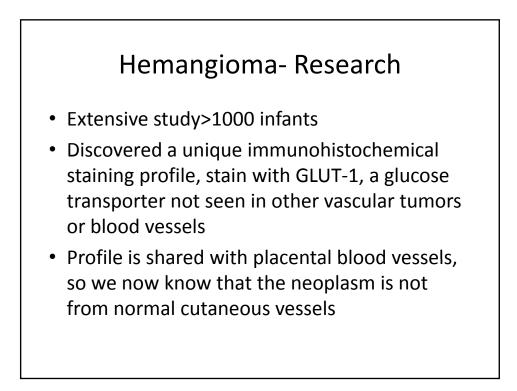
Lumbosacral

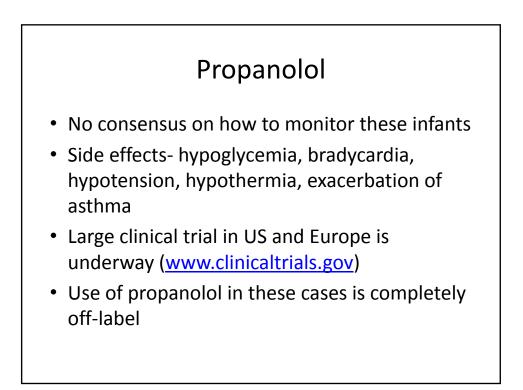
- Spinal dysraphism
- Tethered cord
- Genitourinary anomalies
- "PELVIS"-perineal hemangioma, external genitalia malformations, lipo myelomeningocele, vesico-renal abnormalities, imperforate anus, and skin tags
- MRI for imaging




PHACES



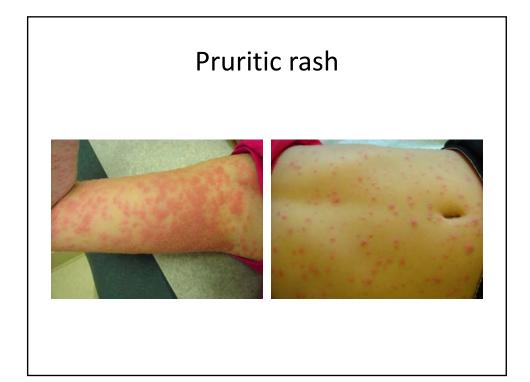

- Segmental infantile hemangioma in an infant with PHACES syndrome
- Involving the posterior neck and right forehead
- Associated with an absent right vertebral artery and a laryngeal hemangioma





Use of Propanolol

- Few studies have shown that propanolol (1-2mg/kg/day, in 3 divided doses) can inhibit the growth of hemangiomas
- A good second line therapy when corticosteroids are not effective
- Thought to work via vasoconstriction, decreased expression of vascular endothelial growth factors (*VEGF*) and the triggering of apoptosis of capillary endothelial cells



Pruritic rash

- Multiple discrete erythematous papules and vesicles noted on trunk and extremities
- Some areas forming confluents plaques, especially around axillae
- No fever or constitutional symptoms

Varicella

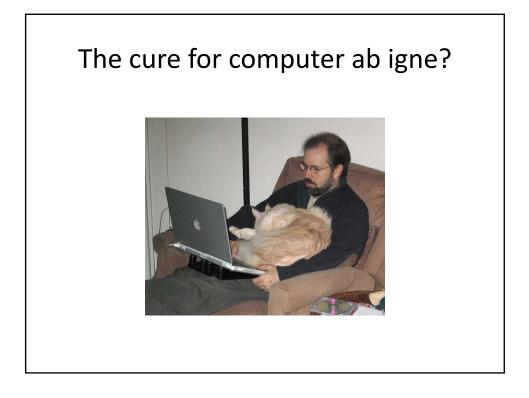
- Patient had one vaccine dose at 1 year of age
- 79% of children develop immunity after one dose of vaccine
- Approx. 99% are immune after the 2nd dose
- Vaccine was introduced to the US in 1995
- Despite this, outbreaks still occur so be on the lookout

Erythema ab igne

- Aka: Toasted skin syndrome, fire stains
- Due to repeated exposure to heat at a lower level than that which causes a thermal burn (43-47 C)
- Lesions start out as erythematous but later change to purple or brown

Erythema ab igne

- Historically seen on the inner thighs and legs of women who sat in front of a stove or open fire
- More commonly seen today from use of heating pads especially in the lumbosacral region



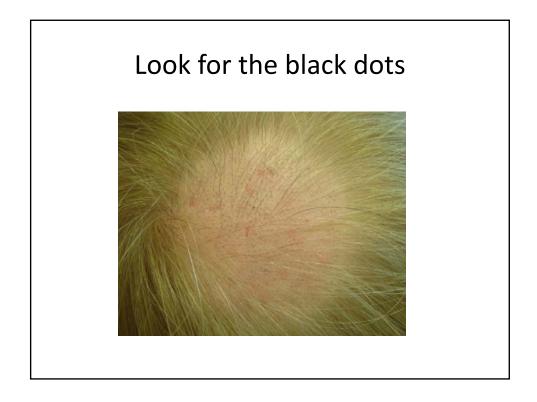
Erythema ab igne

 Carcinoma can develop from dysplastic keratinocytes, in the same way that ultraviolent radiation can result in squamous cell carcinoma

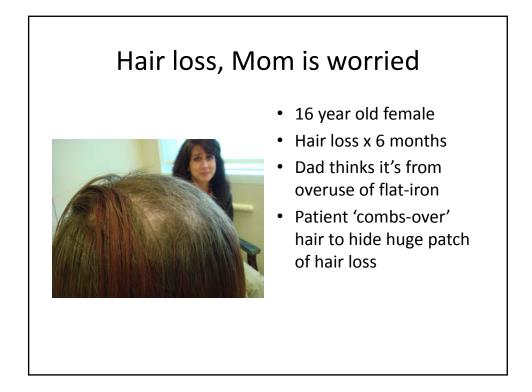
Rash and hair loss

- There are also a few discrete lesions noted on neck and leg
- Fungal cultures were obtained from scalp and neck lesions
- Pt started on topical antifungal cream and shampoo (ciclopirox)

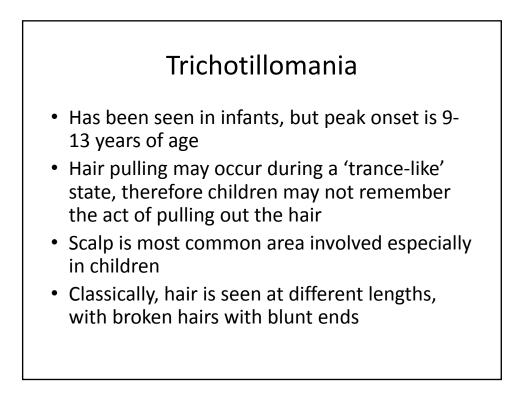
Rash and hair loss


- We received 3 phone calls following the initial visit and the patient's parents insisted that he be seen 3 more times the following week
- Fungal cultures were negative
- First follow up with one PA: started on oral Lamisil and a topical antibiotic after parents noted draining pustules
- Next day returns again, seen by another PA: started on oral antibiotic

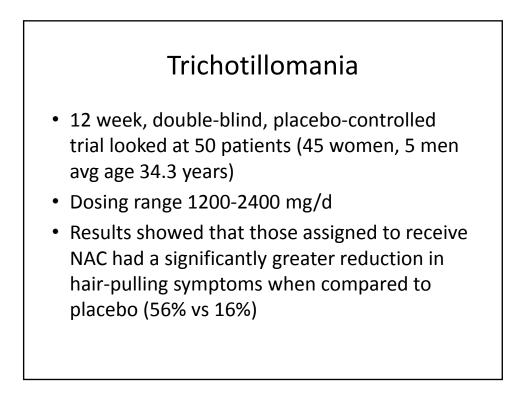
Rash and hair loss and VERY angry parents

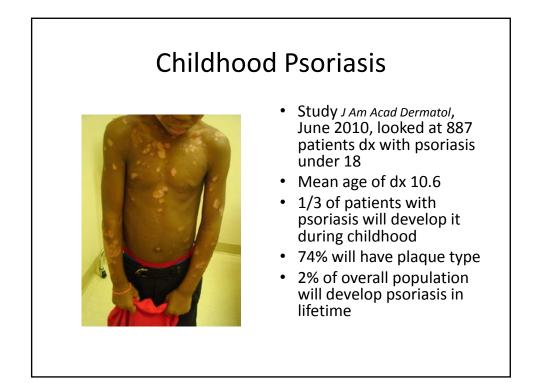


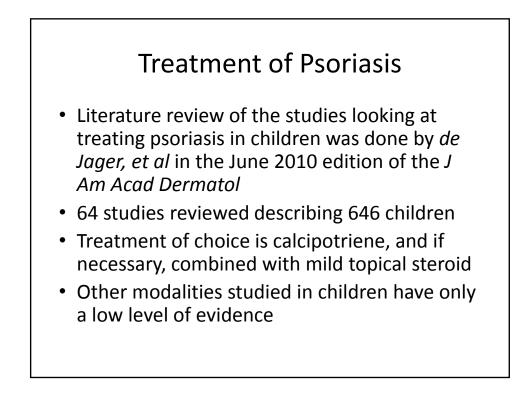
- I see him the next day, mom insists on biopsy
- She decided to stop the shampoo and cream on her own, because it 'wasn't working'
- Demanding to know what in the world is going on with her son
- Child is not bothered by any of the lesions

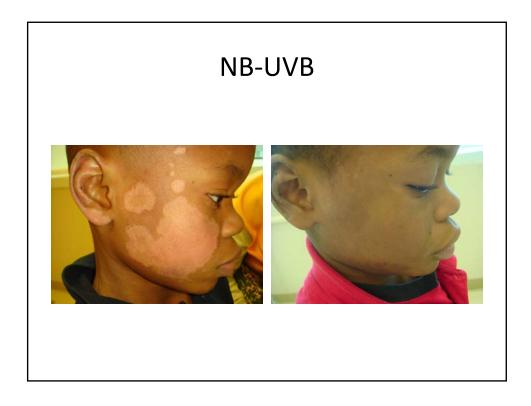


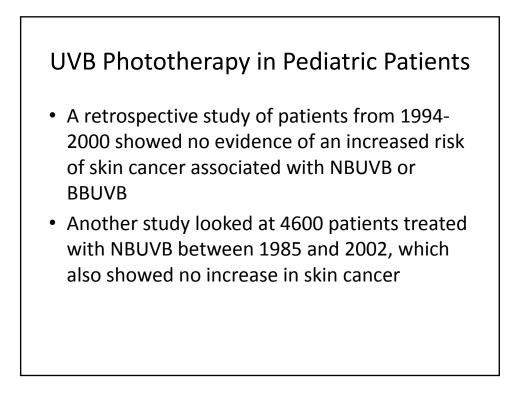
<text>

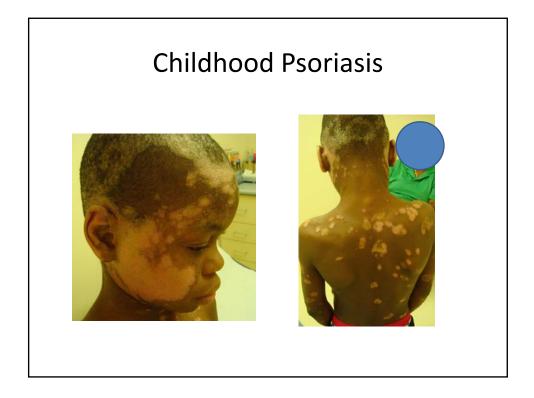

Trichotillomania

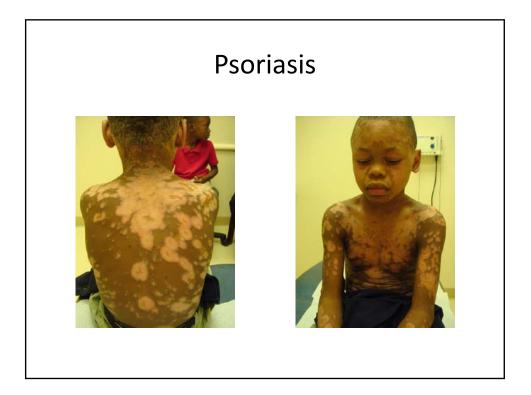

- Hair loss from a patient's repetitive self-pulling of hair
- Repeated urge to pull out scalp hair, eyelashes, facial hair, nose hair, pubic hair, eyebrows, or any/all body hair
- Classified in DSM-IV as an impulse control disorder
- Jury is out on whether this is more like a habit, or a tic, an addiction or obsessive-compulsive disorder

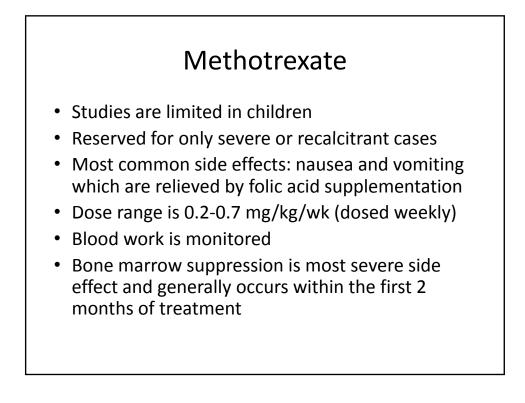


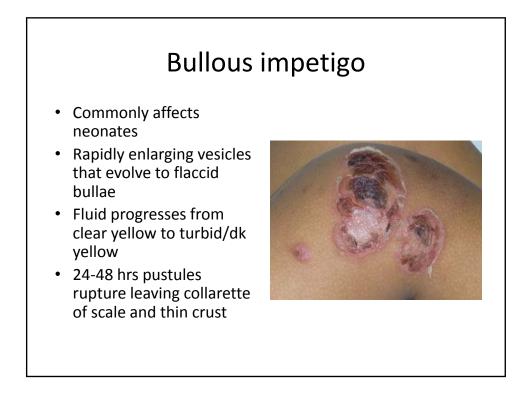

Trichotillomania

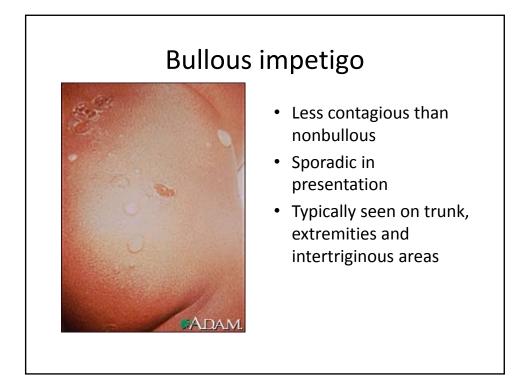

- Classic presentation is the "Friar Tuck" form of vertex and crown alopecia
- Some children engage in trichophagia, where they consume the hair that is pulled, extreme cases can lead to trichobezoar
- Treatments include therapy, medications
- 2009 study in Archives of General Psychiatry reported on the use of N-acetylcysteine in the treatment of trichotillomania








Psoriasis-Methotrexate


- MTX is a folic acid analog that reversibly inhibits dihidrofolate reductase, disrupting DNA synthesis, repair and replication of Tand B lymphocytes
- Approved for use in children for juvenile idiopathic arthritis, aka. JRA
- Used off-label in children for many other rheumatologic and dermatologic conditions

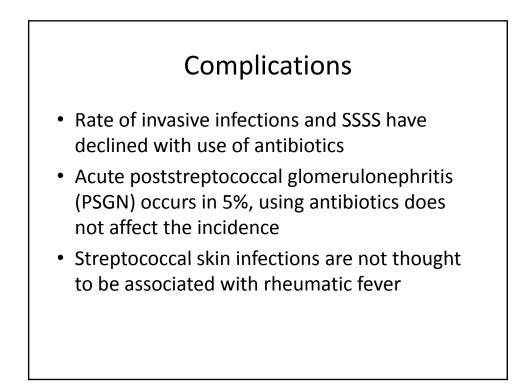


Impetigo Update

- Bacterial infection of the superficial epidermis commonly seen in infants and children
- Crusted erosions or ulcers
- Bullous and nonbullous forms
- Staph aureus is most common cause
- Strep pyogenes also commonly seen, especially in warm and humid climates
- CA-MRSA is becoming more of a problem

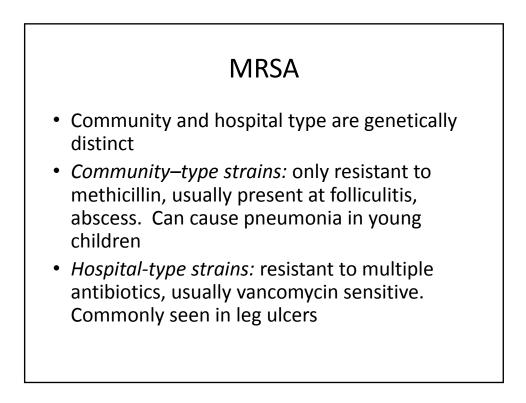
Nonbullous impetigo- aka. impetigo contagiosa

- Preschool-aged children
- Epidemics
- Commonly seen in exposed skin areas: face, extremities
- May begin as small vesicle or pustule that rupture and form yellow crusts


Nonbullous impetigo D/D

- Atopic dermatitis
- Contact dermatitis
- Dermatophytosis
- Discoid lupus
- Herpes simplex
- Herpes zoster
- Varicella
- Pediculosis/scabies

Common impetigo

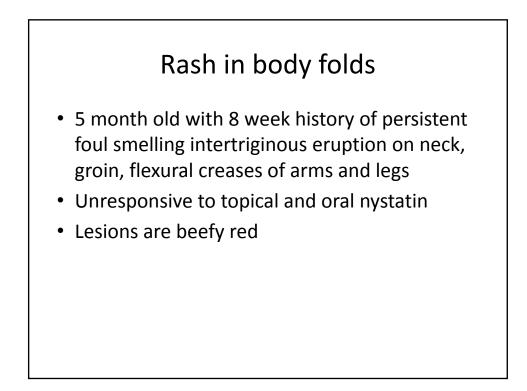


- Secondary impetiginization of conditions that disrupt the skin
- Seen commonly in eczema, bites, abrasions, HSV

MRSA

- First discovered in 1961, only two years after the introduction of methicillin
- Incidence has dramatically increased
- Despite concerns and enhanced virulence of MRSA, most cases can be managed with good hygiene, removal of crusts and topical antibiotics

MRSA-treatment


- Drainage- uncomplicated abscess<5cm
- If larger/or complicated-oral antibiotics
- Address: nares, groin, axillae, skin folds...
- Mupirocin/Retapamulin (Altabax) for nares
- Bleach baths for body/ tea tree oil
- No sharing of towels, soap

- Usually self-limiting
- Treatment is usually started to avoid complications, prevent recurrence and spread
- Recurrences are common despite treatment

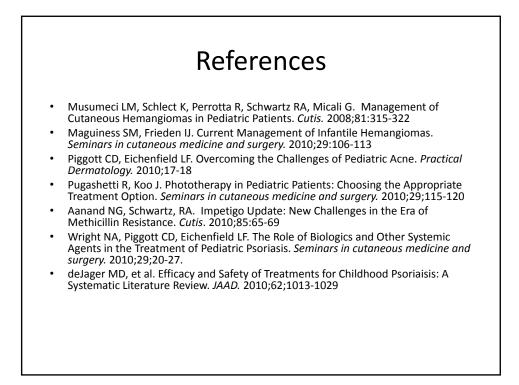
Rash in body folds

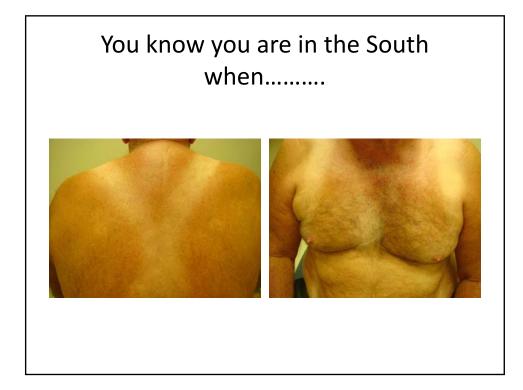
D/D Rash in body folds

- Candidiasis
- Inverse psoriasis
- Seborrheic dermatitis
- Atopic dermatitis
- Langerhans cell histiocytosis
- Bacterial intertrigo

Rash in body folds

- Culture yielded heavy growth of Group A beta-hemolytic strep
- Bacterial and fungal cultures should be done for intertrigo in babies, esp in the neck folds
- Topical mupirocin alone may be sufficient for some

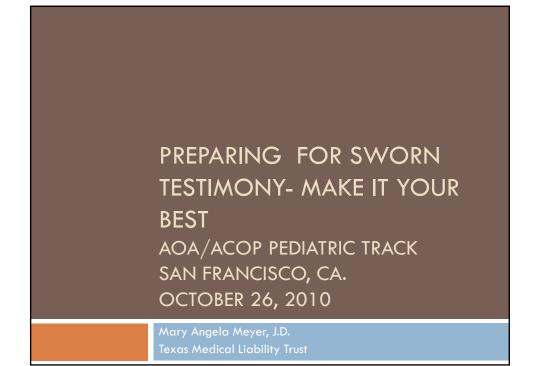

GABHS

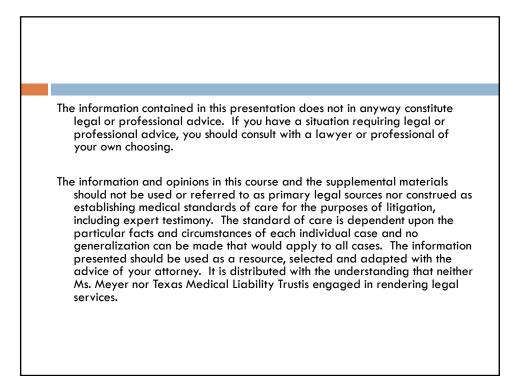

- Produces a number of skin infections:
- ✓ Cellulitis
- ✓ Ecthyma
- ✓ Erysipelas
- ✓ Perianal cellulitis
- ✓ Intertrigo (very under-recognized)

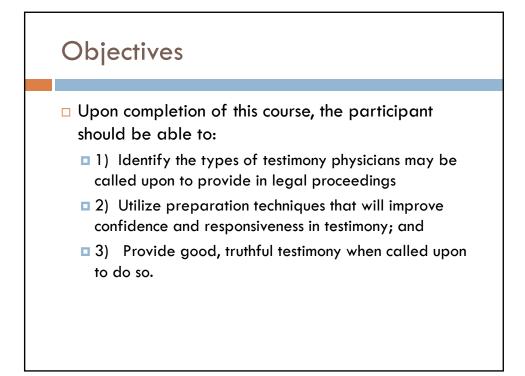
GABHS-Intertrigo

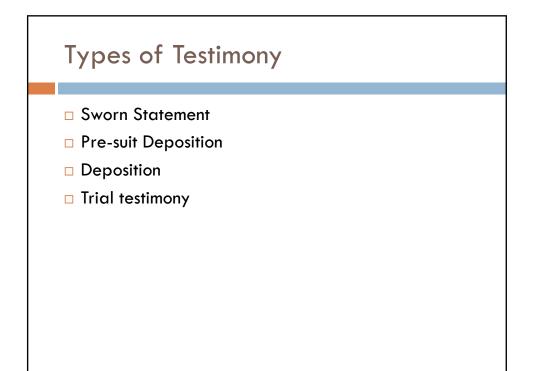
- Foul odor
- No satellites
- Not responding to antiyeast preparations
- Patients may have low grade fevers, fussiness

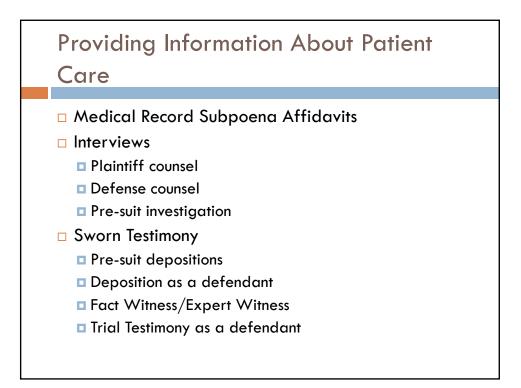
TUESDAY, OCTOBER 26, 2010

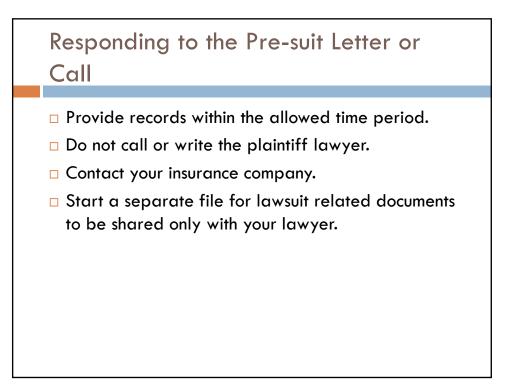

Moderator - Judith Thierry, DO

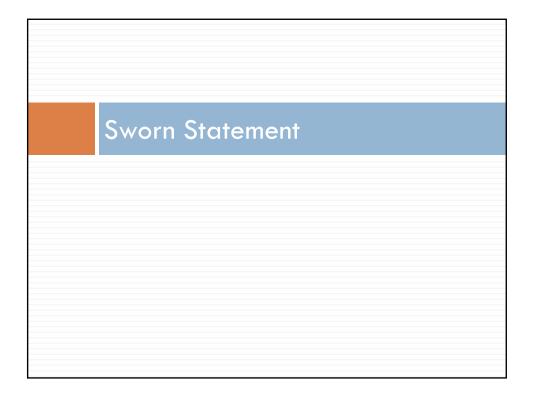

9:00 am - 9:45 am

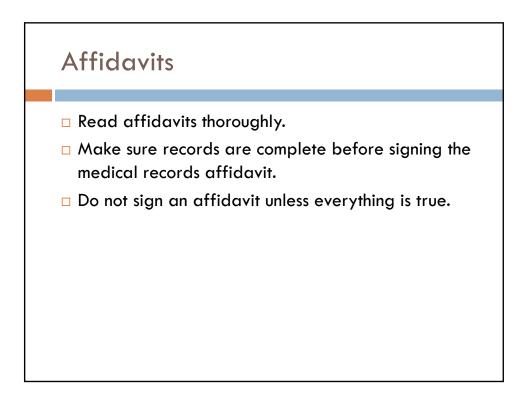

Prep for Court/Depositions

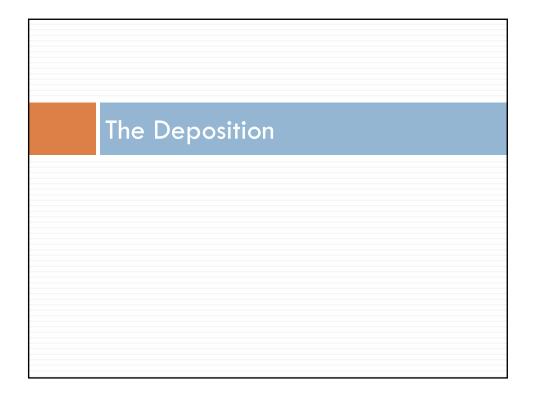

Mary Angel Meyer, JD

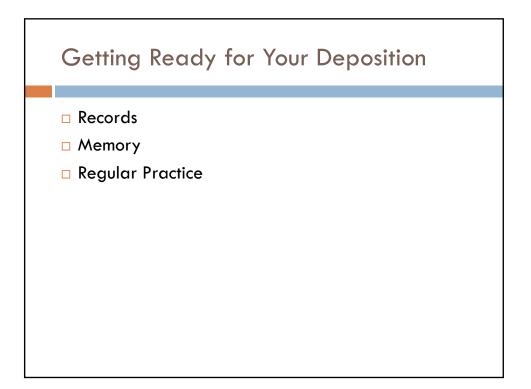

Objective: Upon completion of this lecture, the participant will be able to identify the types of testimony physicians may be called upon to provide in legal proceedings, utilize preparation techniques that will improve confidence and responsiveness in testimony, and provide good, truthful testimony when called upon to do so.

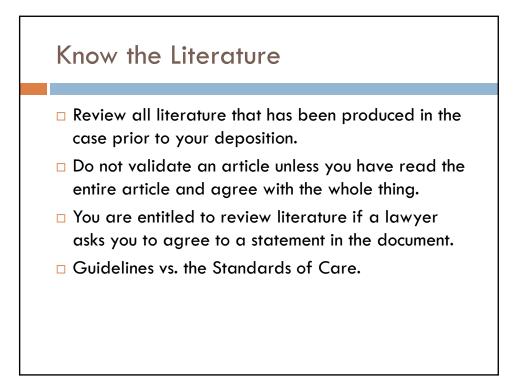


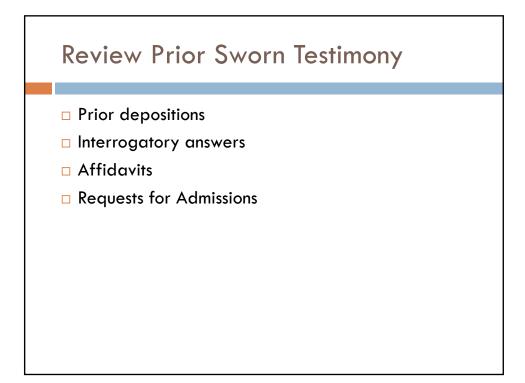


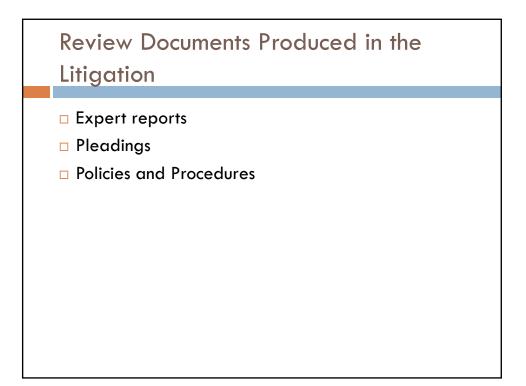




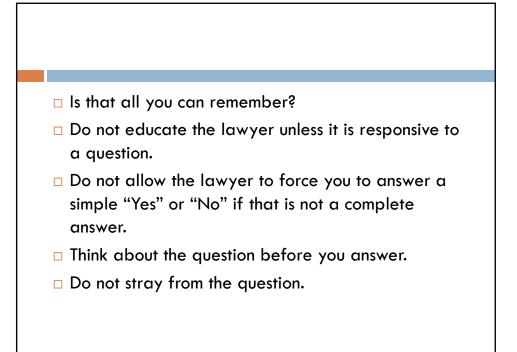


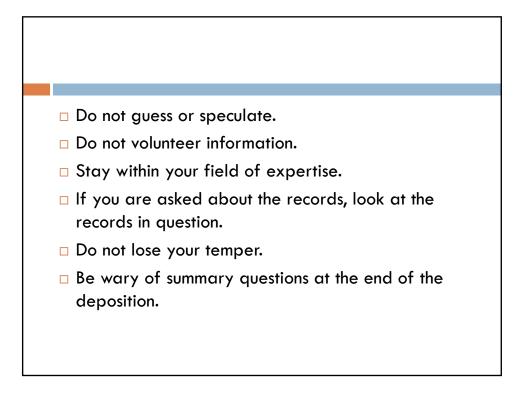

PREPARATION IS KEY

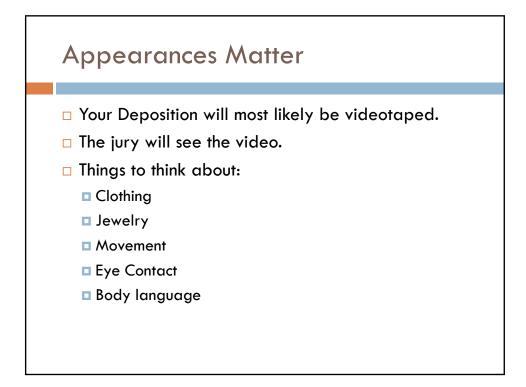

 You cannot spend too much time getting ready.

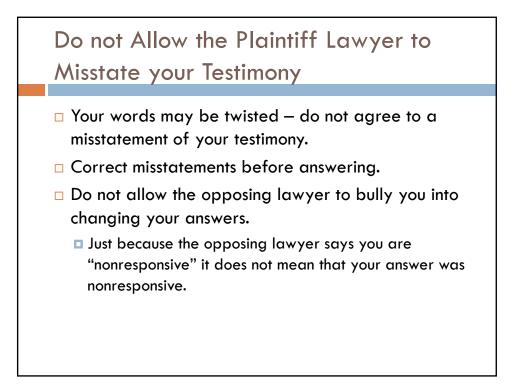


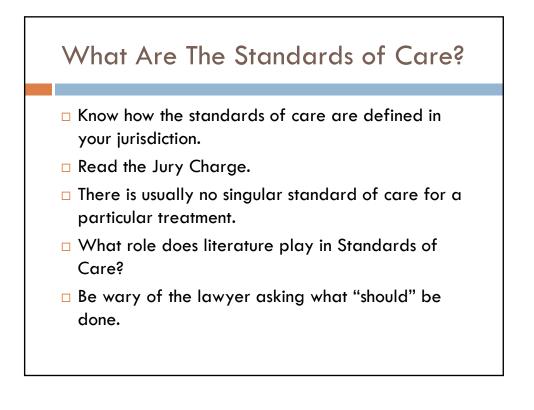
Know your Records

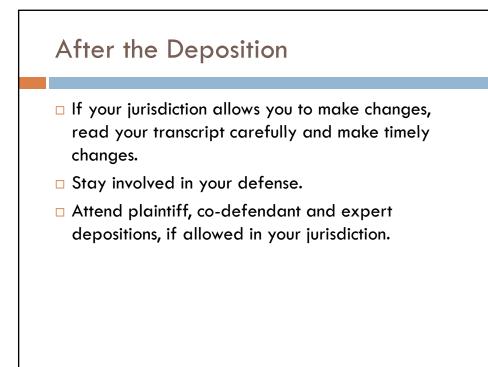

- □ Be able to read your own handwriting.
- □ Review your records meticulously.
- You must be intimately familiar with all records pertaining to the care of the patient.
- □ Your chart is a summary of the care given.
- Do not fall prey to the "if it was not charted it was not done" argument.

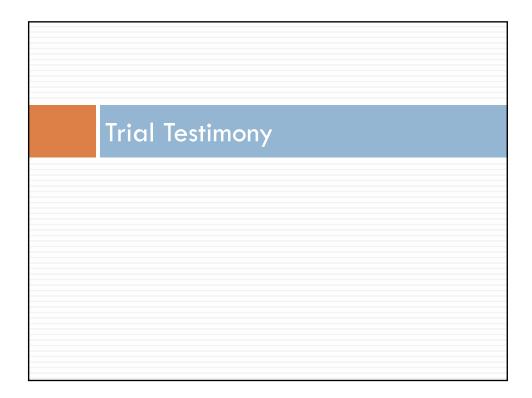


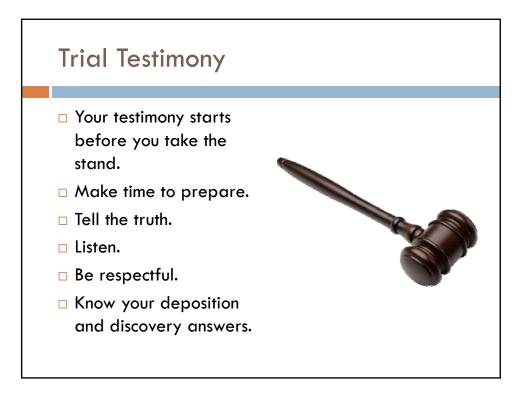


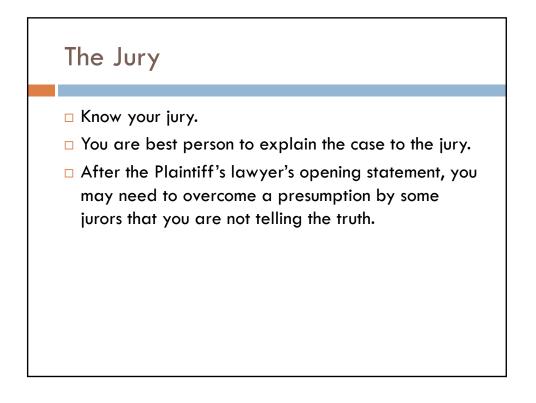


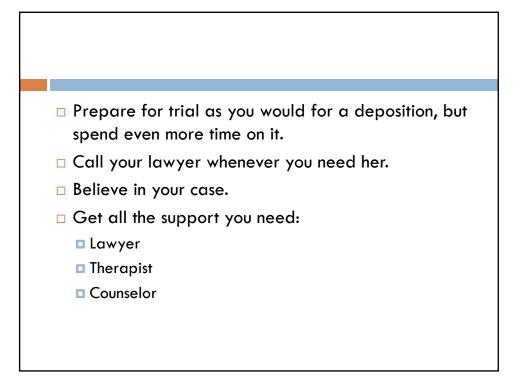


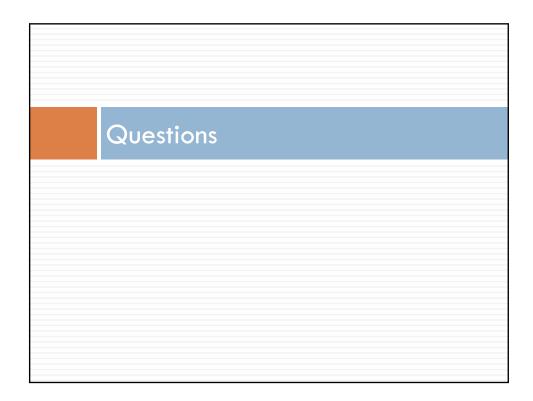



- Peer review information
- Divorce
- Arrests
- □ State Board Investigations
- National Practitioners Data Bank Information
- Previous lawsuits
- □ EEOC investigations/ employee lawsuits









TUESDAY, OCTOBER 26, 2010

Moderator - Judith Thierry, DO

10:15 am - 11:00 am

Special Needs Advocation

Barbara L. Baldwin, DO, FACOP

Objective: TBA

TUESDAY, OCTOBER 26, 2010

Moderator - Judith Thierry, DO

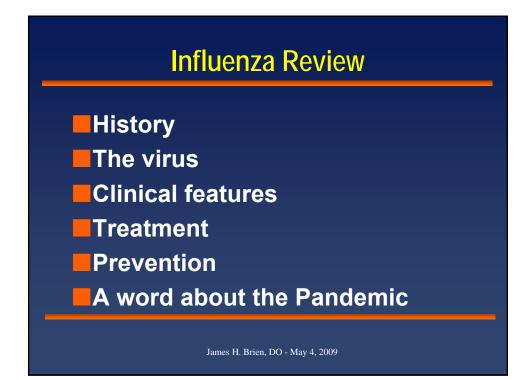
11:00 am - 12:00 n

Gastric Banding as Treatment for Adolescent Obesity

Alison A. Clarey, DO

Objective: Upon completion of this lecture, the participant will be able to discuss indications and contraindications for SWL in the adolescent, know the criteria for weight loss surgery and the benefits for the adolescent's health, discuss surgical approaches in SWL for the adolescent, discuss risks and complications associated with laparoscopic adjustable band, gastric bypass, and gastric sleeve, and discuss the current literature for SWL in the adolescent.

TUESDAY, OCTOBER 26, 2010


Moderator - Judith Thierry, DO

2:00 pm - 3:00 pm

A Case-Based Review of Influenza

James H. Brien, DO, FAAP

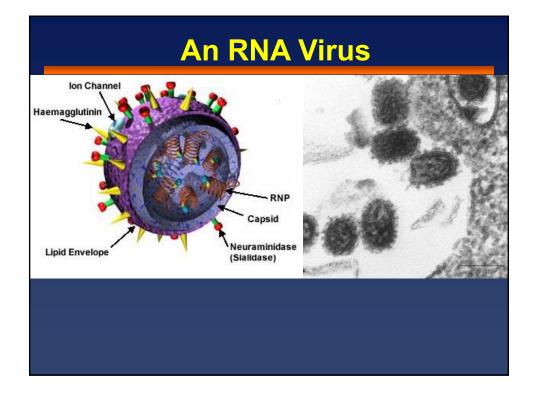
Objective: Upon completion of this lecture, the participant will be able to recognize the clinical findings of a child with Influenza, discuss the differential diagnosis of influenza, and prescribe the appropriate treatment therapy for influenza at all ages and it's complications.

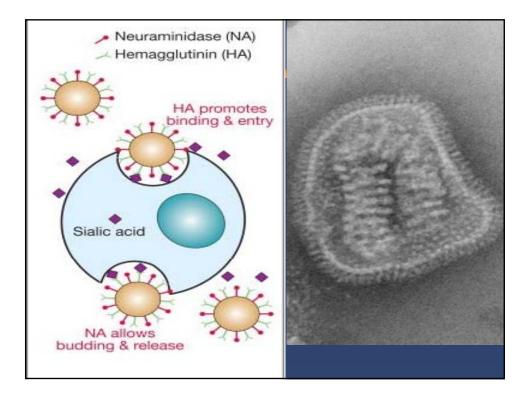
Influenza in History

Described by Hippocrates ~400 BC Pandemic of 1580, which was the first accurate description, swept through Russia, Europe and Africa, killing > 8000 in Rome alone & nearly wiping out small towns in Spain.

Pandemics in History

- On average three pandemics per century have been documented since the 16th century, occurring at intervals of 10 to 50 years.
- During the 20th century, influenza pandemics have caused millions of deaths, social disruption and profound economic losses worldwide.




Pandemics in History

Occurrence	HA/NA Subtype	Years Since Last	(Excess) US Deaths
1918-20	H1N1	27	500,000
1957-58	H2N2	37	70,000
1968-69	H3N2	10	40,000

Pandemics in History

- Many experts thought that the next pandemic would involve sustained transmission of highly pathogenic avian influenza (H5N1) – Bird Flu.
- So much for predictions based on the SWAG method.

Clinical Features of Influenza

Sudden onset of symptoms after 1 to 4 days of incubation

- an infectious period may begin the day before symptoms manifest and continue for 5 days; longer in children
- Symptoms persist for 1 to 2 weeks
 - Some have chronic cough for much longer

Varying symptomatology

CDC. MMWR Morb Mortal Wkly Rep. 2001;50(RR-4):1-44.

Presentation of Clinical Influenza Differs by Age Group

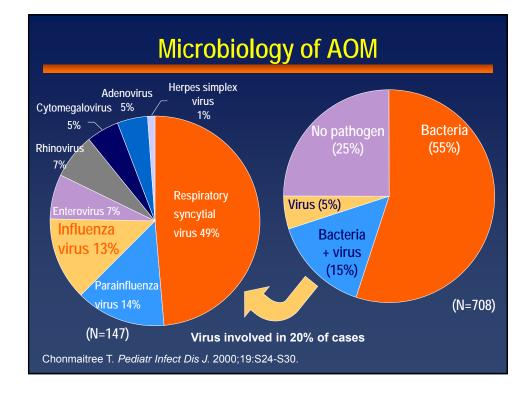
Sign/Symptom	Children	Adults	Elderly
Cough (nonproductive)	++	++++	+++
Fever	+++	+++	+
Myalgia	+	+	+
Headache	++	++	+
Malaise	+	+	+++
Sore throat	+	++	+
Rhinitis/nasal congestion	++	++	+
Abdominal pain/diarrhea	+	-	+
Nausea/vomiting	++	_	+

Monto AS et al. *Arch Intern Med.* 2000;160:3243-3247; Cox NJ, Subbarao K. *Lancet.* 1999;354:1277-1282.

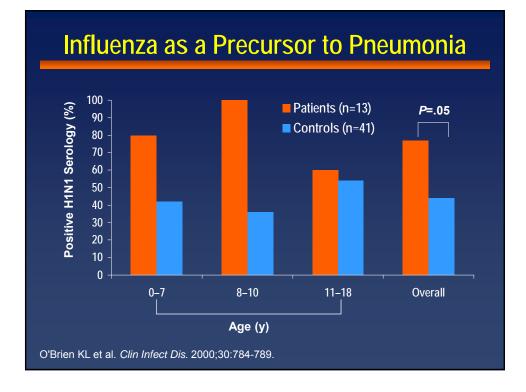
++++ Most frequent sign/symptom; + Least frequent; – Not found

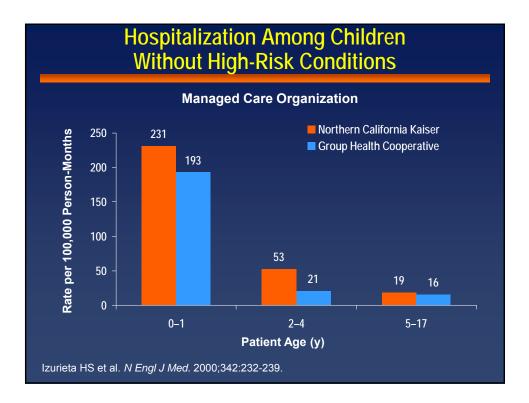
Influenza Virus Infections Cause a Spectrum of Illnesses and Complications

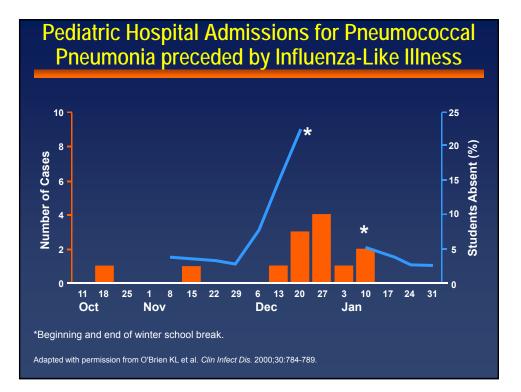
Influenza syndrome ("typical influenza")

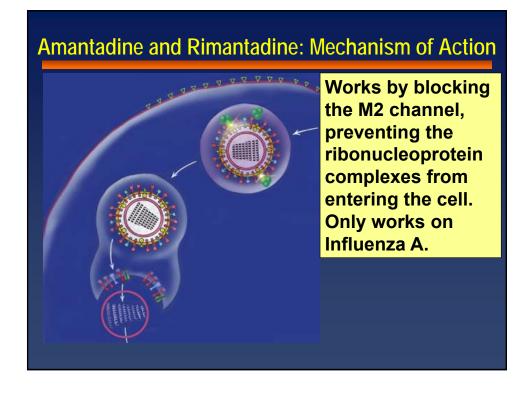

- upper respiratory illness
- croup/laryngitis
- tracheobronchitis
- bronchiolitis/asthma exacerbation
- gastrointestinal symptoms (children)

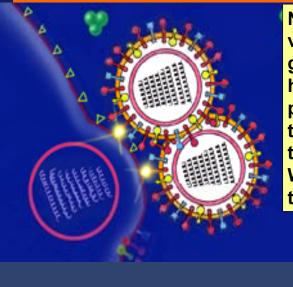
Common complications


- acute otitis media (children)
- sinusitis
- pneumonia
- bacterial superinfection
- exacerbation of underlying diseases
- dehydration (infants)


Rare complications

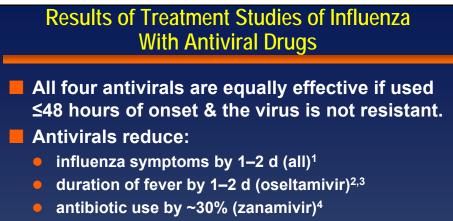

- encephalopathy
- Reye's syndrome (associated with aspirin)
- myositis, myocarditis

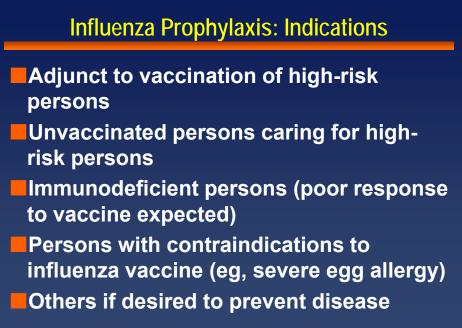




Treatment and Prevention Modalities

Anti-viral agents
What & How




Neuraminidase is a viral envelope glycoprotein that helps with the penetration through thick respiratory tract mucous. Works against both types A & B.

Antiviral Drugs for Influenza Prophylaxis and Treatment

Drug	Approval	Age
M2 Inhibitors (A on	<u>ly)</u>	
Amantadine	Prophylaxis	≥1 y
(Symmetrel)	Treatment	≥1 y
Rimantadine	Treatment	Adults
(Flumadine)	Prophylaxis	Children, adults
Neuraminidase Inhi	bitors (A and B)	
Zanamivir	Treatment	≥7 y
(Relenza)		
Oseltamivir	Treatment	≥1 y
(Tamiflu)	Prophylaxis	≥13 y

- acute otitis media by 44% (oseltamivir)²
- secondary disease transmission in families (all)^{5,6,7}
- 1. Couch RB. N Engl J Med. 2000;343:1778-1787.
- 2. Whitley RJ et al. Pediatr Infect Dis. 2001;20:127-133.
- 3. Treanor JJ et al. *JAMA*. 2000;283:1016-1024.
- 4. Kaiser L et al. Arch Intern Med. 2000;160:3234-3240.
- 5. Couch RB et al. J Infect Dis. 1986;153:431-440.
- 6. Welliver R et al. *JAMA*. 2001;285:748-754.
- 7. Hayden FG et al. N Engl J Med. 2000;343:1282-1289.

CDC. MMWR Morb Mortal Wkly Rep. 2003;52(RR-8).

Antiviral Drugs for Influenza Prophylaxis and Treatment

Recommendation will depend on the sensitivity of the strain of Influenza circulating.

Agent, group	Treatment	Chemoprophylaxis
Oseltamivir		
75 mg caps 60 mg / 5ml suspension		
Adults	75mg capsule twice per day for 5 days	75mg capsule once / day
Children (age ≥1 YR, weight)		
15 kg or less	60 mg per day divided BID	30 mg once per day
15–23 kg	90 mg per day divided BID	45 mg once per day
24–40 kg	120 mg per day divided BID	60 mg once per day
>40 kg	150 mg per day divided BID	75 mg once per day

Agent, group	Treatment	Chemoprophylaxis
Zanamivir 5mg per inhalation (Diskhaler)		
Adults and Children ≥ 7yrs	2 inhalations (10mg) BID for 5 days.	2 inhalations (10mg) once daily for 10 days
Children ≥ 5 yrs		2 inhalations (10mg) once daily for 10 days.

Agent, group	Treatment	Chemoprophylaxis
Amantadine 100mg tabs 50mg/5ml suspension		
Adults	Two 100mg tabs BID or as single dose for 48 hrs past disappearance of symptoms.	Same as treatment.
Children	 1 – 9 yrs – 5 – 8 mg/kg per day single or divided – not to exceed 150mg/day. 9 – 12 yrs – same as adults. 	Same as treatment.

Agent, group	Treatment	Chemoprophylaxis
Rimantadine 100mg tab 50 mg/5ml suspension		
Adults	200 mg/day as single or BID dosing	Same as treatment.
Children	Not FDA-approved.	1 – 9 yrs – 5 mg/kg/day as single dose, not to exceed 150 mg. ≥ 10 yrs – as adult.

Off-Label Use of Tamiflu for Infants

Age	Recommended treatment dose for 5 days
<3 months	12 mg twice daily
3-5 months	20 mg twice daily
6-11 months	25 mg twice daily
FD 4	
FDA-approved for e	mergency treatment during 2009 - 2010 H1N1 Pandemic - No Longer Recommended

Off-Label Use of Tamiflu for Infants

Age	Recommended prophylaxis dose for 10 days
<3 months	Not recommended unless situation judged critical due to limited data on use in this age group
3-5 months	20 mg once daily
6-11 months	25 mg once daily
FDA-approved for en	nergency treatment during 2009 - 2010 H1N1 Pandemic - No Longeer Recommended

Off-Label Use of Tamiflu for Infants

As of June 23, 2010, the emergency use authorization recommendation ended and is no longer in effect.

Treatment and Prevention Modalities

Vaccine What & How

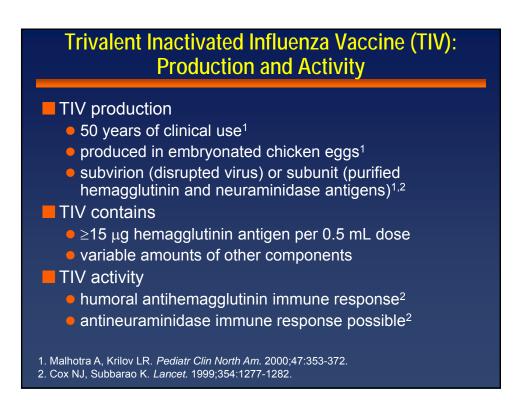
Two Influenza Vaccines Are Available

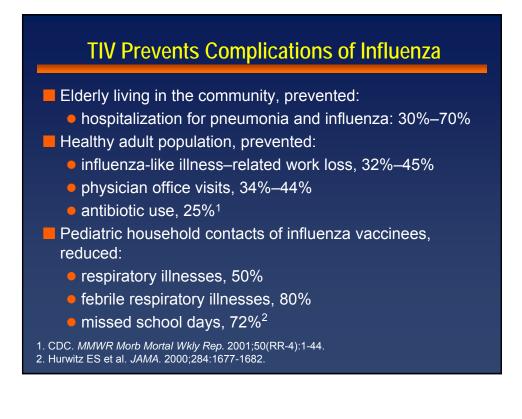
 Trivalent inactivated vaccine (TIV), delivered by intramuscular injection
 Trivalent live attenuated cold-adapted vaccine (CAIV-T), delivered by intranasal administration

CDC. MMWR Morb Mortal Wkly Rep. 2003;52(RR-8):1-36.

Both TIV and CAIV-T Contain 2 Influenza A and 1 Influenza B Viruses Strains chosen annually based on surveillance data from the World Health Organization both vaccines contain two influenza A viruses

- both vaccines contain one influenza B virus¹
- Both vaccines contain hemagglutinin and neuraminidase, resulting in:
 - antibodies to hemagglutinin, which neutralize virus infectivity
 - antibodies to neuraminidase to modify disease severity²


1. Malhotra A, Krilov LR. *Pediatr Clin North Am.* 2000;47:353-372. 2. Cox NJ, Subbarao K. *Lancet*. 1999;354:1277-1282.

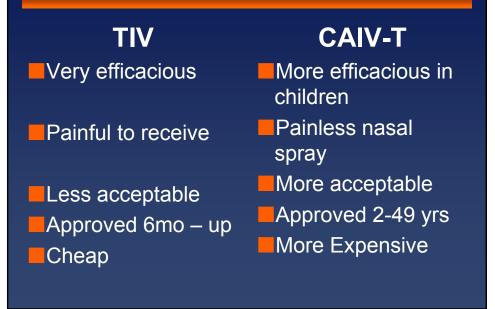

> Both TIV and CAIV-T Contain 2 Influenza A and 1 Influenza B Viruses

The 2010 vaccine will contain: A/California/7/2009 (H1N1) (The 2009 – 2010 pandemic strain) A/Perth/16/2009 (H3N2)

B/Brisbane/60/2008

Strain / Geo. Origin / Strain # / Yr of isolation (Subtype)

CAIV-T: Production and Activity

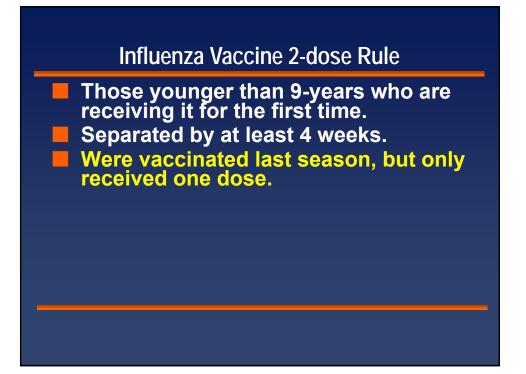

- The parent influenza virus grows best at low temperature (cold adapted) in nasopharynx, not in lower respiratory tract¹
- Vaccine made from genetic reassortant that retains cold adaptation but represents latest variety of influenza²
- Vaccine contains equal amounts of each of three recommended strains²
- Vaccine induces serum and mucosal antibodies when administered intranasally^{1,2}

1. 6B6: MM/WR More Mortel Wikly Rep. 2003;55((RR-2)):1-24. 2. Boyraetz 5:5:5:6:1:Valaine. 2000);28:48:6:38-1682.

Comparing TIV and CAIV-T

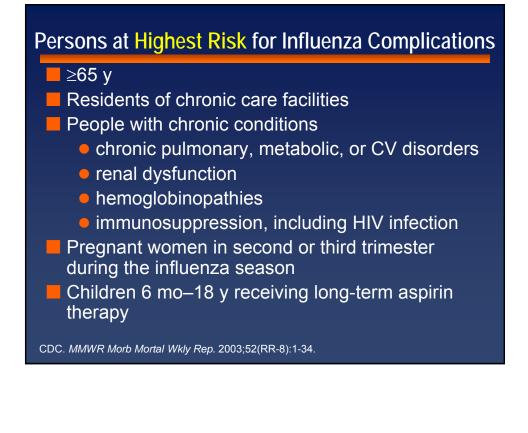
Category	TIV	CAIV-T
Administration	Intramuscular Serum antibodies	Intranasal Mucosal immunity
Formulation	Inactivated	Live attenuated
Efficacy young children Efficacy adults <65 y	~50%–90% 70%–90%	70%–90% 70%–90%
Safety	Sore arm	Runny nose
Growth medium	Chick embryos	Chick cells
Indication	Any person <u>></u> 6 mo	Anyone 2-49 yr

Comparing TIV and CAIV-T Summary


Improve Vaccine Acceptance

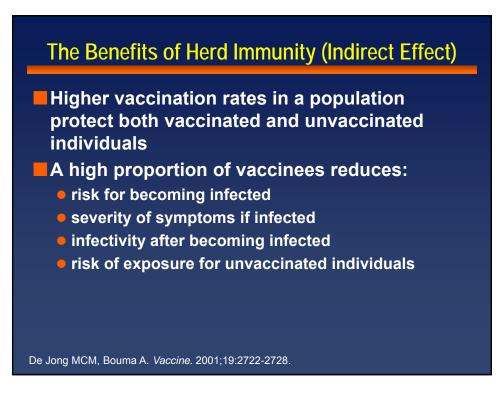
- Currently, children receive up to 20 sticks by their 2nd birthday.
- Receiving an additional annual stick at any age may exacerbate the needle phobia that develops in many.
- The topical, nasal spray influenza vaccine (CAIV-T) makes compliance with these recommendations much more likely.

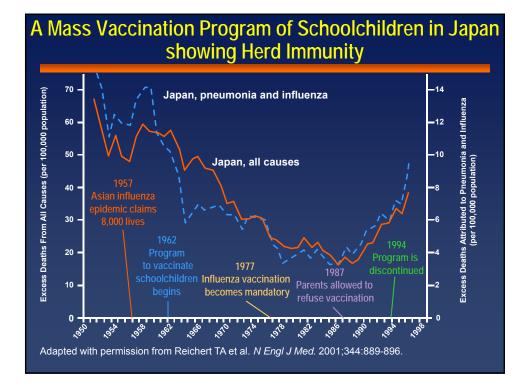
CAIV-T Indications


CAIV-T is approved for healthy persons

- Children aged 2-8 years receiving vaccination with any influenza vaccine for the first time need two doses, 6-10 weeks apart; children aged 2-8 previously vaccinated need one annual dose
- Persons 9-49 years need one annual dose
- Not approved for persons with underlying <u>chronic disease, including children with</u> asthma

Influenza Vaccine 2-dose Rule For 2010 Season


Children aged 6 months--8 years who did not receive at least 1 dose of an influenza A (H1N1) 2009 monovalent vaccine, who have never received a seasonal influenza vaccine before, or who were vaccinated for the first time with the seasonal 2009--10 seasonal vaccine but who received only 1 dose should receive 2 doses of the 2010--11 influenza vaccine formula, spaced 4 or more weeks apart.



ACIP Recommendations

- Advisory Committee on Immunization Practices (ACIP) sets priorities for vaccinating each population group
- Vaccinate in October and earlier
 - People <50 y (including children 6–23 mo) at high risk for influenza complications
 - People ≥50 y
 - Healthcare workers
 - All children ≥6 mo 19 years of age
 - Household contacts of high-risk persons
 - Vaccinate household contacts and caretakers of children <6 months of age
- Vaccinate everyone else beginning in November
 - Do not defer these people if they request vaccination before November

CDC. MMWR Morb Mortal Wkly Rep. 2003;52(RR-8):1-34.

Strategies for Community Protection

Propose strategies for reducing community outbreaks:

- a) Primary providers must be on board
- b) Public education regarding:
 - Myths about disease & vaccine
 - Identifying & vaccinate high-risk patients
 - Published recommendations
- c) Increase immunization rate of healthy people (Herd Immunity).

Global Pandemic Control Phases

- WHO Pandemic Phases

 Inter-pandemic Period
 Pandemic Alert
 - Pandemic
 - Post-Pandemic

Pandemic Planning

- Global level: WHO
- National level: CDC
- State level: Department of Health
- Local level: Health authorities develop strategies for implementing pandemic phase objectives within their jurisdictions.

State Pandemic Influenza Planning

Non-medical measures will be the principal control measures until adequate supplies of vaccine are available:

- Shelter in place
- Hygiene
- Supportive Rx
- Anti-viral therapy

Items of Note

- Decisions made in an atmosphere of scientific uncertainty.
- Risk communication to public, policy makers and health care staff must be well orchestrated.
- Legal authority and procedures for introducing unusual public health measures must be established and understood by key personnel.
- Better prepared now than in years past good exercise for the system.

All recommendations can be found on line

www.cdc.gov

Additional information can be found at <u>www.aap.org</u>

AMERICAN COLLEGE OF OSTEOPATHIC PEDIATRICIANS

TUESDAY, OCTOBER 26, 2010

Moderator - Judith Thierry, DO

2:00 pm - 3:00 pm

A Case-Based Review of MRSA

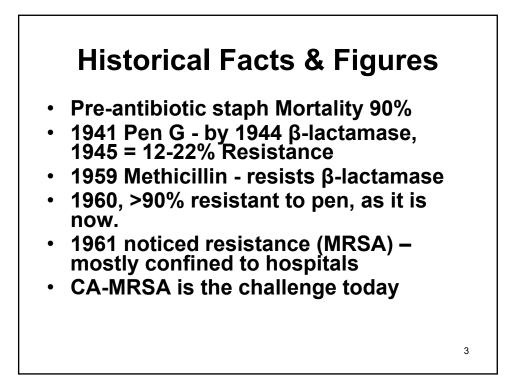
James H. Brien, DO, FAAP

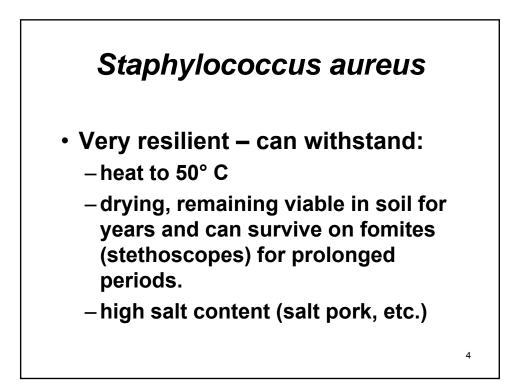
Objective: Upon completion of this lecture, the participant will be able to interpret the sensitivities of Staph Aureus cultures in order to select the best therapy, recognize the key features that distinguish Staph Aureus infections from other bacteria, and describe the complications of MRSA bacteremia.

Staphylococcus aureus From Job's Boils to MRSA

ACOP October 26, 2010

James H. Brien, D.O.

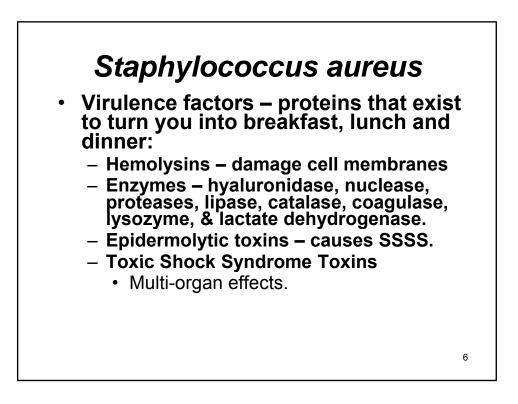

1

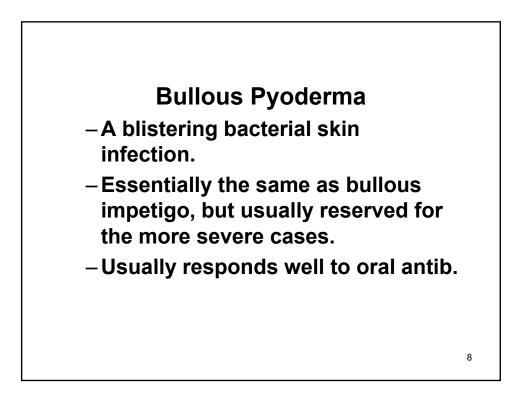

2

S*taph aureus* History

- Alexander Ogston Scottish surgeon – 1881, described and named the organism from a stained drop of pus from a patient with a carbuncle.
- Pustules, boils, carbuncles, furuncles

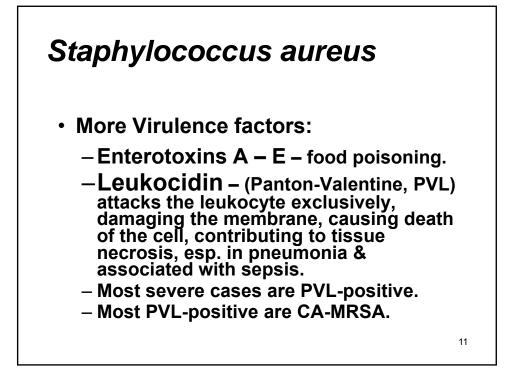
 all abscesses of varying size.
- Abscess common denominator, and typical of *Staph aureus*.
- A golden bunch of grapes.



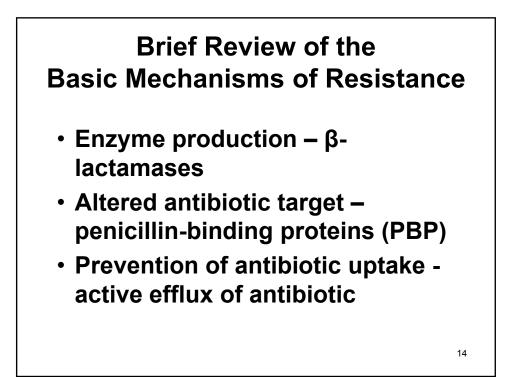


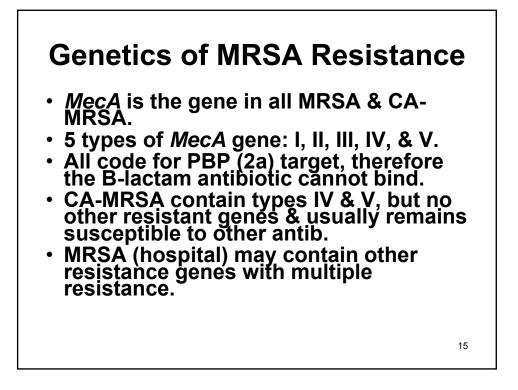
- Identification by testing for a virulence factor <u>coagulase</u> production:
 - Staph aureus secretes free coagulase into the broth – reacts with coagulasereacting factor in plasma with the conversion of fibrinogen to fibrin and clot formation.
 - Coagulase + on the report is almost always a problem.

5



- MRSA first isolated in 1961, 2 years after methicillin was marketed.
- Initially confined to hospitals.
- Community-acquired MRSA (CA-MRSA) began to be increasingly seen in mid-90's.
- Now called Community-associated MRSA.
- CA-MRSA linked to most severe infections

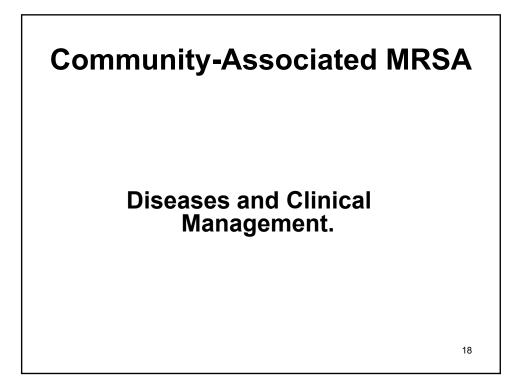

12

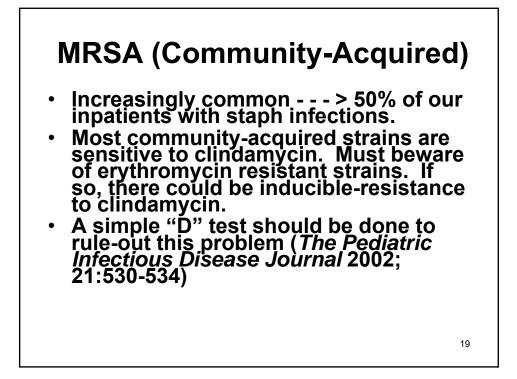

CA-MRSA Sepsis Syndrome

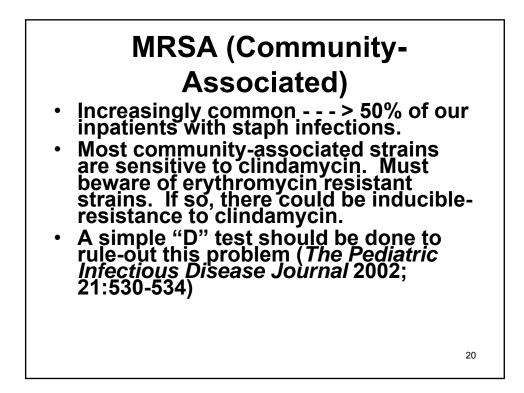

- Infants and young children
- Hypotension and shock
- Necrotizing pneumonia (esp after influenza)
- Coagulopathy: Waterhouse Friderichsen.
- Thrombocytopenia
- High mortality
- PVL-positive MRSA, & maybe MSSA also

13

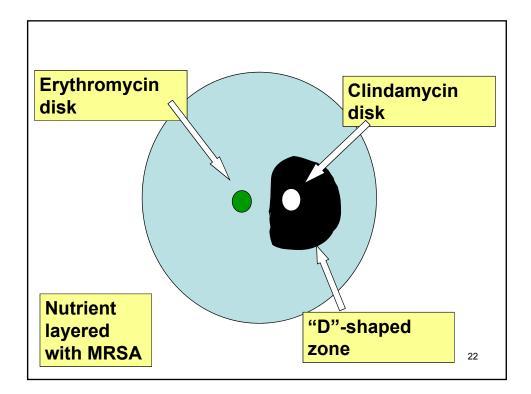
Similar to meningococcemia

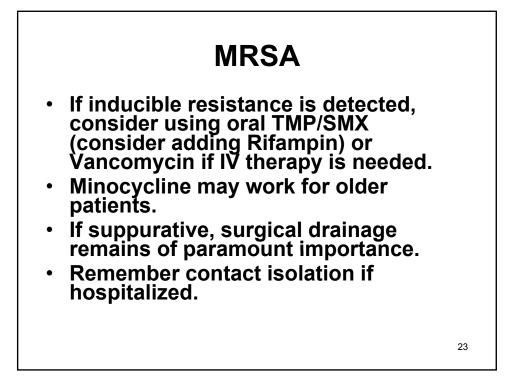


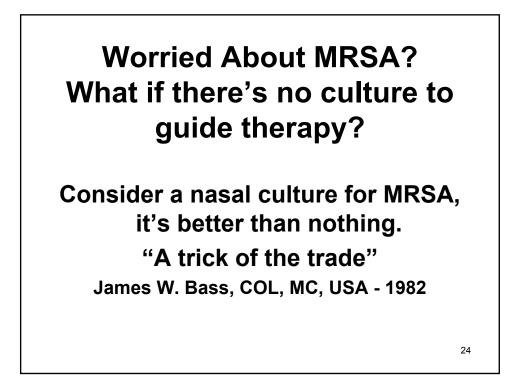




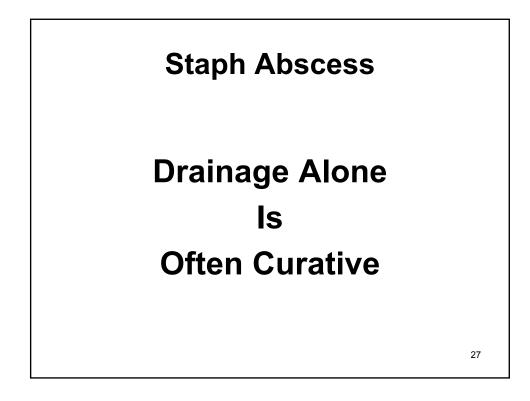
- Outbreaks in community of serious skin/soft tissue infections or necrotizing pneumonia.
- MRSA isolates--multiply susceptible, share types IV & V MecA gene & the PVL locus.
- Are resistant to PCN, Oxacillin, +/- Emycin.
- PVL MRSA strains:
 - Are widely distributed in some communities
 - Have been transmitted in hospitals
 - Associated with severe infections

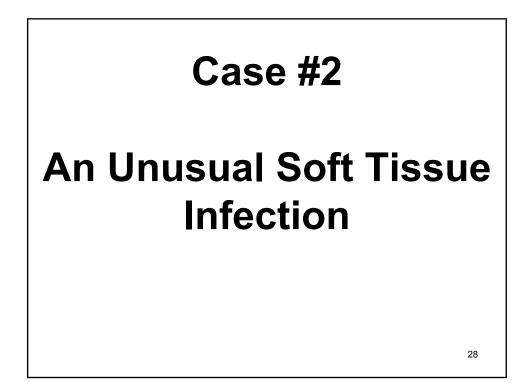


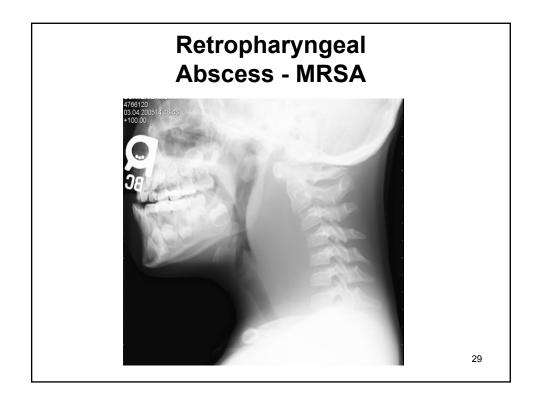


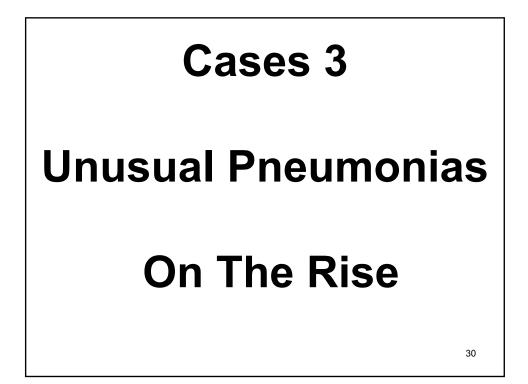


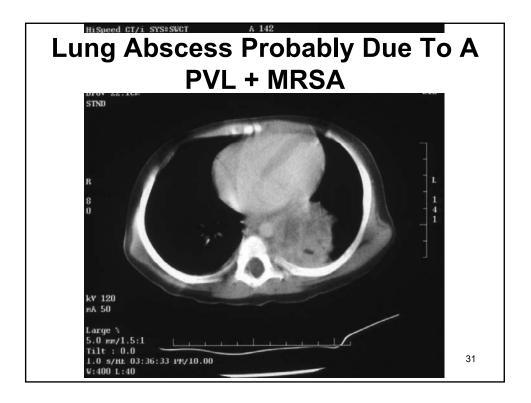
ORGANISM ANTIBIOTIC	S. aureu MIC-ug/m]	
Amox/Clav Amp/Sul Ampicillin Cefazolin Clindamycin Erythromycin Gentamicin Oxacillin Penicillin	>4/2 8/4 >8 8 <=0.25 >4 <=1 >2 >8	R I R I R I S I S I R I R I R I
Rifampin Tetracycline Trimeth/Sulfa Vancomycin		S S S S

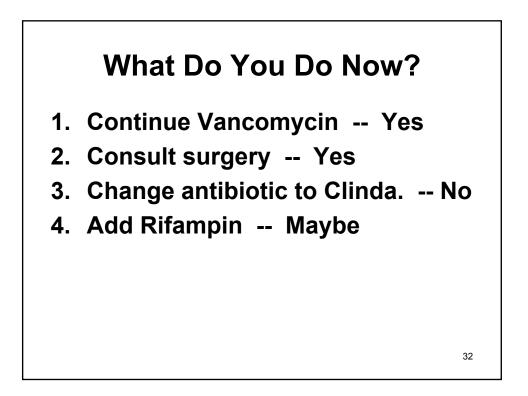


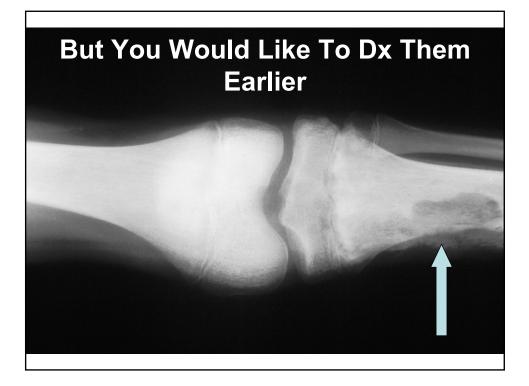

Staph aureus Infections MRSA & MSSA


Soft Tissue Infections

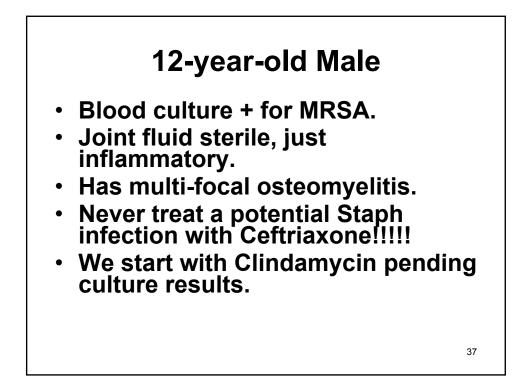

25

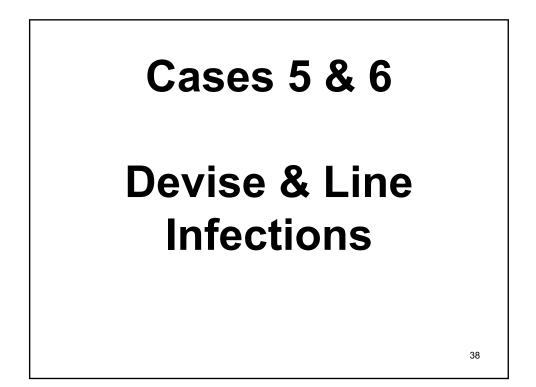


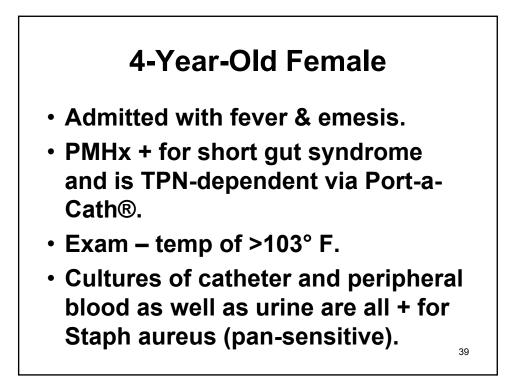


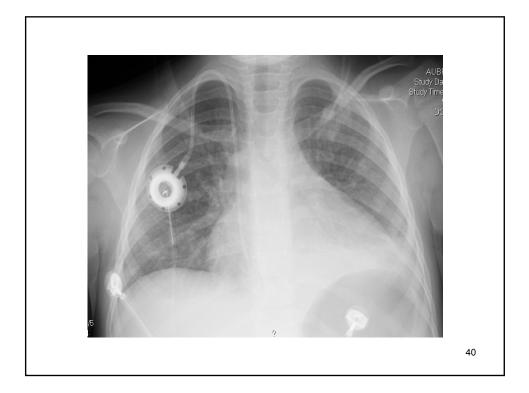


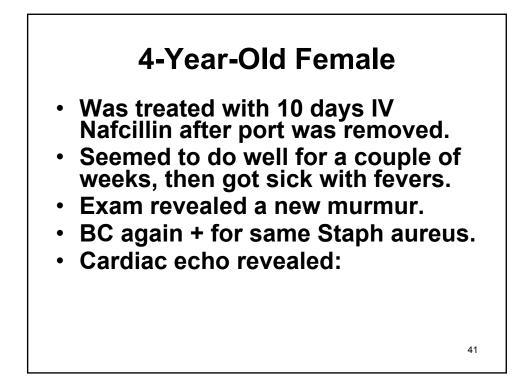

Case #4

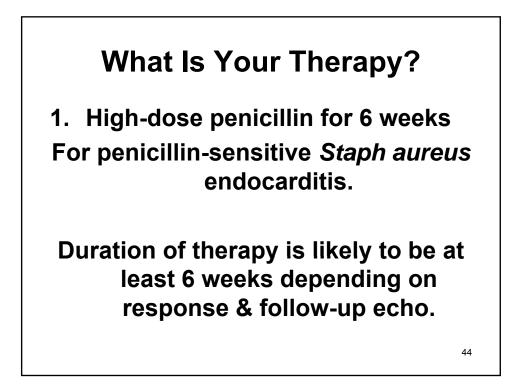

Severe Bone & Joint Infections

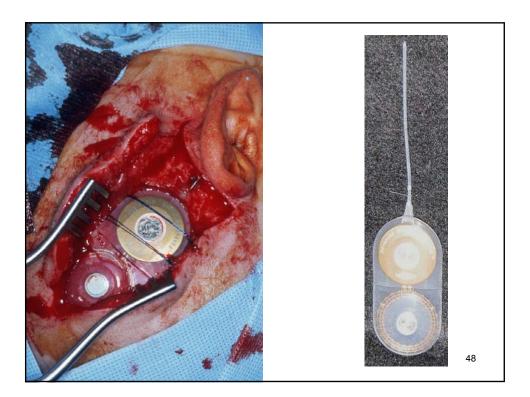

33










30-Month-Old Female

- Hx of congenital deafness.
- Got cochlear implant.
- Hearing much improved.

30-Month-Old Female

- 7-weeks later, she began having erythema, swelling, drainage and pain near the implant site a few days after the area was struck with a toy thrown by her sibling.
- 5-days later, she was admitted with an MRSA infection of the site and had the implant surgically removed.

What Is The Recommended Antibiotic?

- 1. Vancomycin 60mg/kg/day
- 2. Clindamycin never for CNS-related inf.
- 3. Ceftriaxone (Rocephin®) don't ever trust for any staph infection
- 4. Rifampin may use to augment other antistaph drug, but never alone.

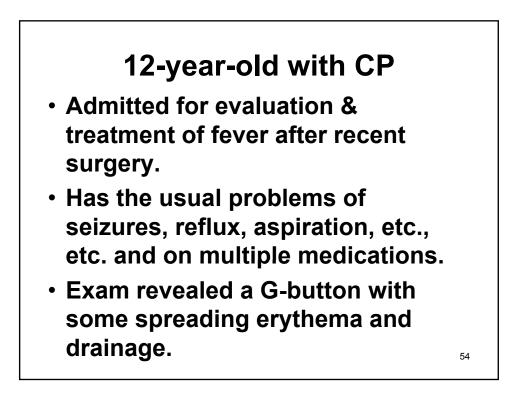
What Other Serious Complication is Associated with Cochlear Implants?

3. Meningitis – occurs more in children with implants than controls & most are caused by *Streptococcus pneumoniae*.

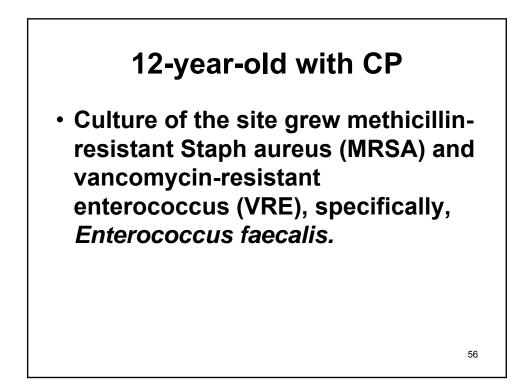
50

Cochlear Implant Meningitis

- ²/₃ are children <7 years of age.
- 3/1000 incidence.
- Inner ear malform.
- Temporal bone.
- Vaccines (our job).

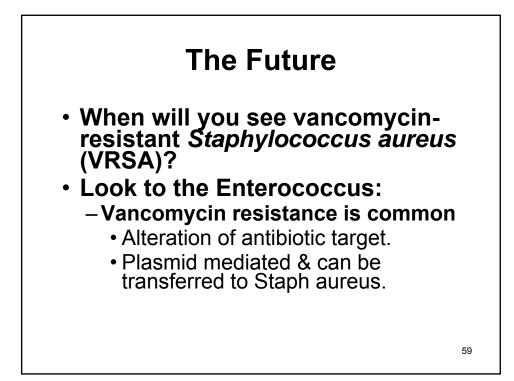

Cochlear Implant Meningitis Excellent review with specific recommendations by Charles Bluestone, M.D. In The Pediatric Infectious Disease Journal 22(5) May 2003 pp 477-478

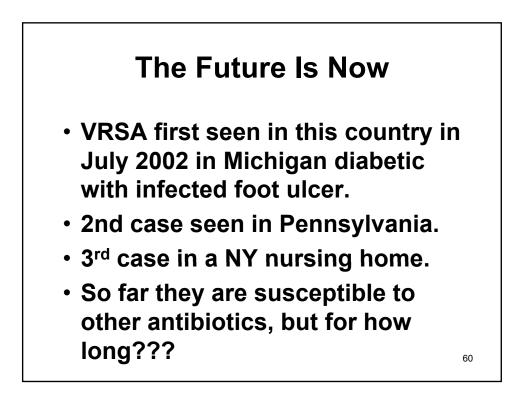
52

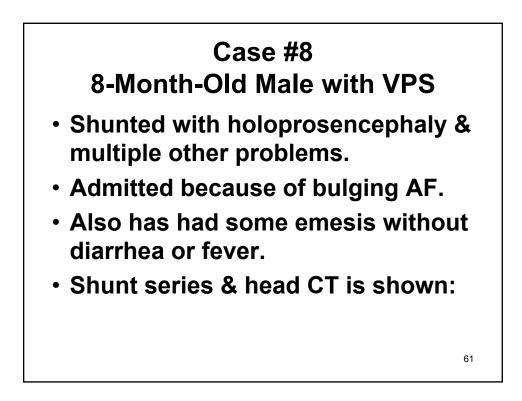

Case #7

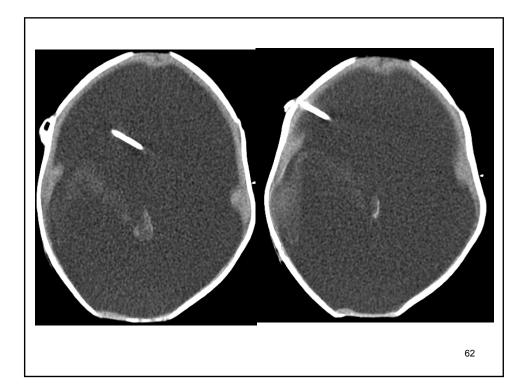
A 12-Year-Old with Severe CP & G-button problem

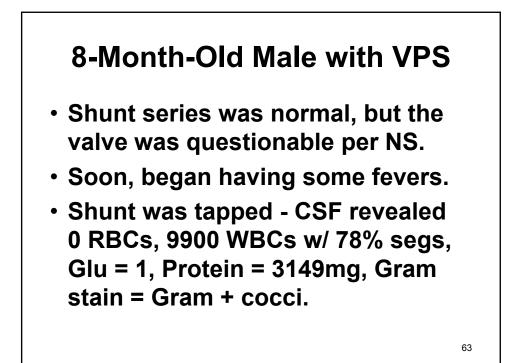
<u>CP – Rapidly Increasing</u> <u>Population</u>

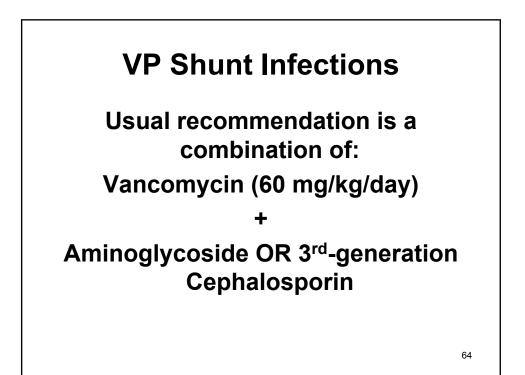

Which of the following should be <u>considered</u> for therapy?

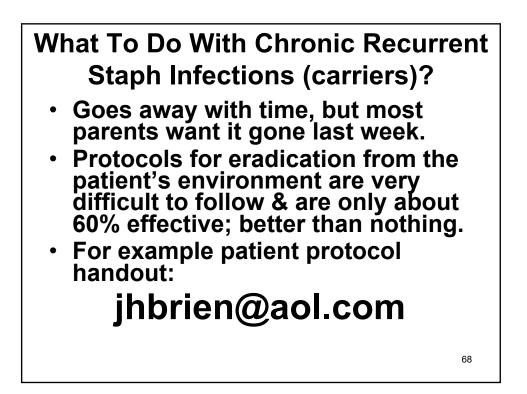

- 1. Vancomycin no, already resistant.
- 2. Linezolid (Zyvox®) Can treat both.
- 3. Quinupristin/dalfopristin (Synercid®) – not for *E. faecalis*.
- 4. Gentamicin not appropriate.

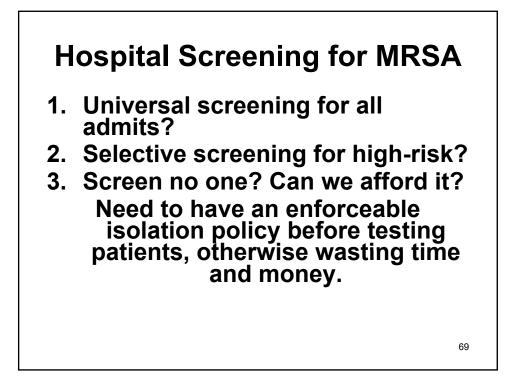

New products for MRSA and ?VRSA

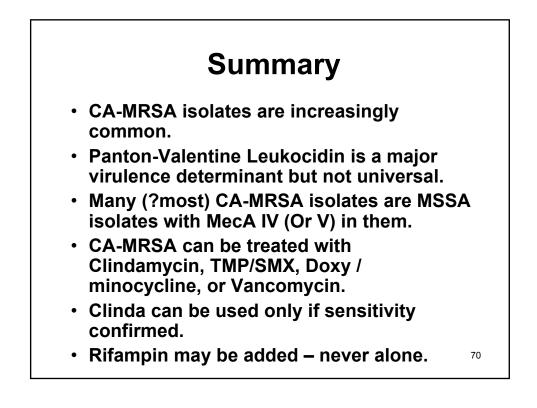

- Quinupristin/Dalfopristin (Synercid)
 - A streptogramin
 - For MRSA & VRE NOT for E. faecalis
- Linezolid (Zyvox)
 - Oxyzolidinone antibiotic
 - For MRSA & VRE
- Daptomycin (Cubicin)

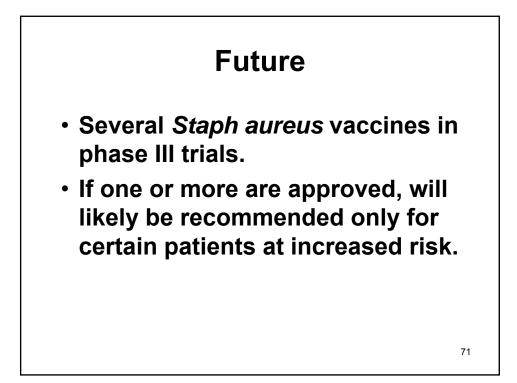

58

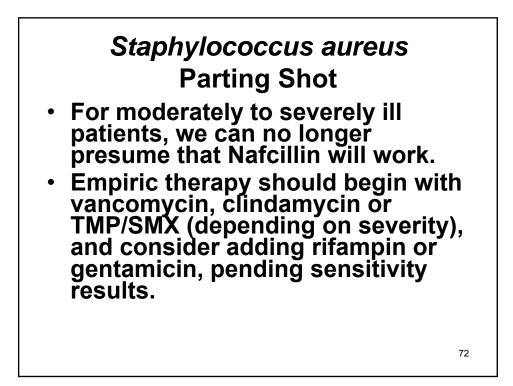


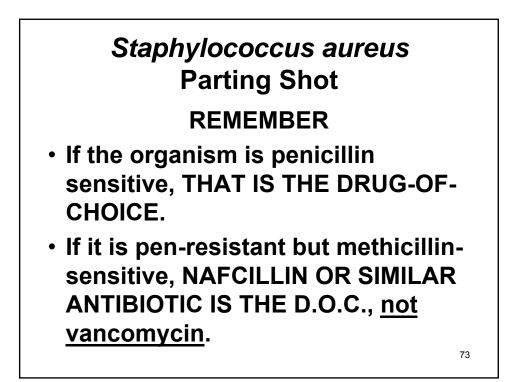


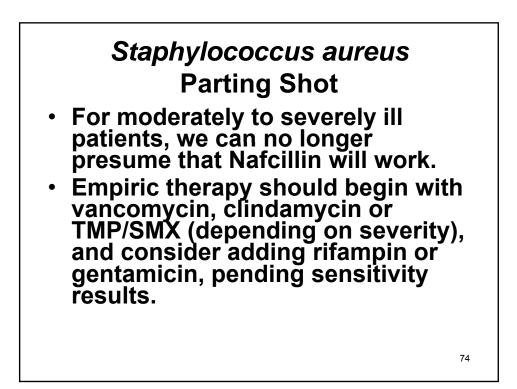

In Addition to IV Antibiotics, Which of the Following Would You Do Next?

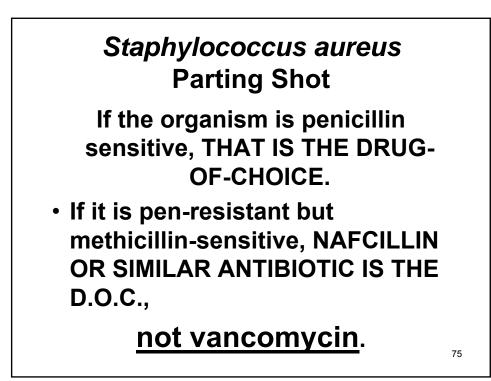

- 1. Remove the shunt and replace with a vetriculostomy drain.
- 2. Externalize the old shunt.
- 3. Leave the old shunt in place.
- 4. Give antibiotics through the old, externalized shunt.

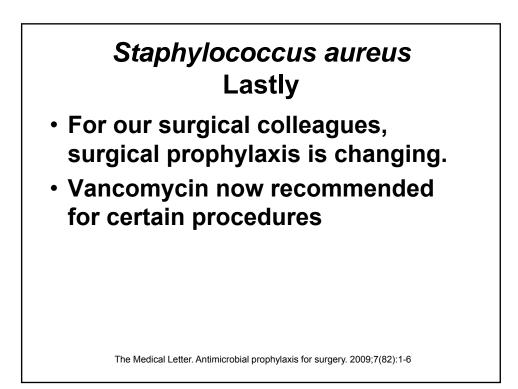








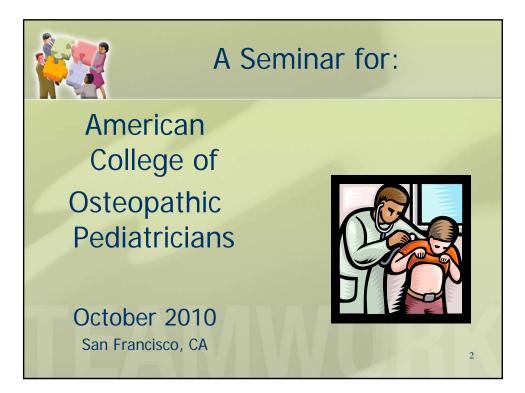


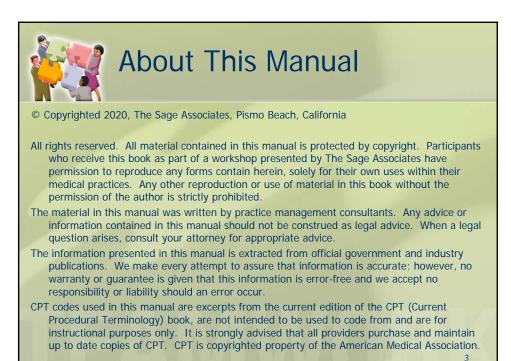


AMERICAN COLLEGE OF OSTEOPATHIC PEDIATRICIANS

TUESDAY, OCTOBER 26, 2010

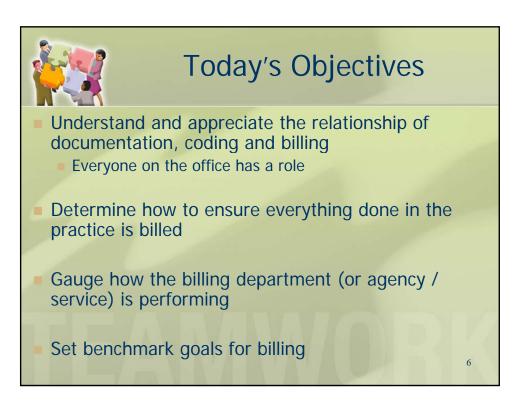
Moderator - Judith Thierry, DO

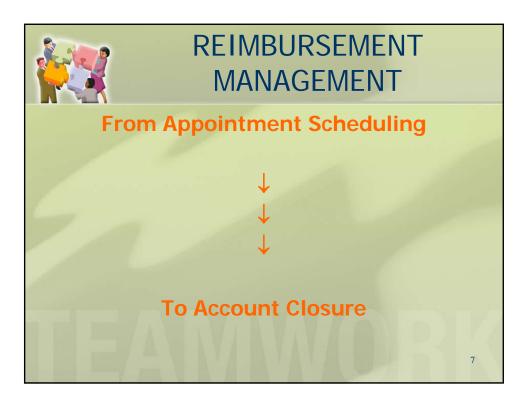

3:00 pm - 4:00 pm

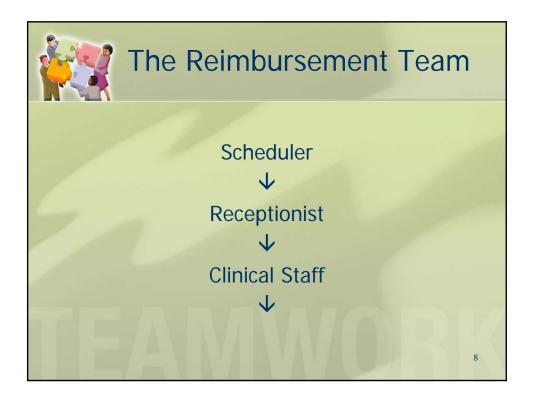

Optimizing Revenue in Your Pediatric Practice

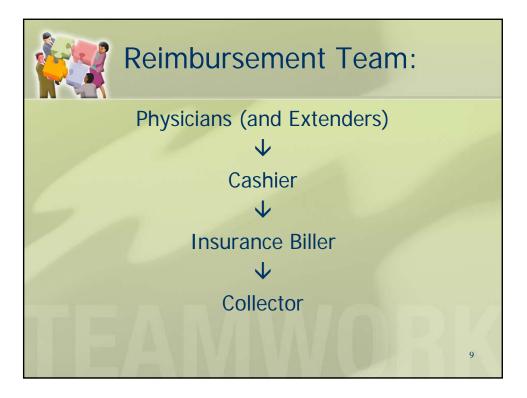
Mary Jean Sage, CMA-AC

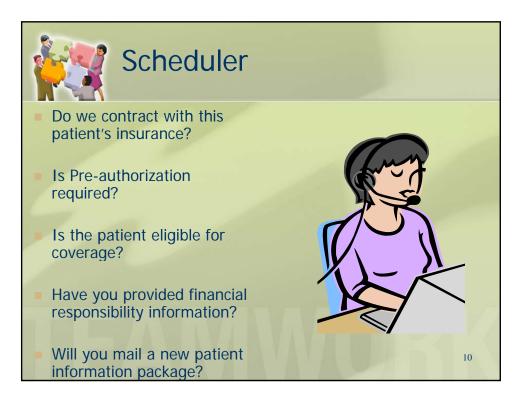

Objective: Upon completion of this lecture, the participant will be able to understand the relationship between documentation, coding and billing, determine how to ensure everything done in the practice is being billed, gauge how the billing department (agency/service) is performing, set benchmark goals for billing, and begin to prepare the ICD-10; the new way of reporting your diagnosis.

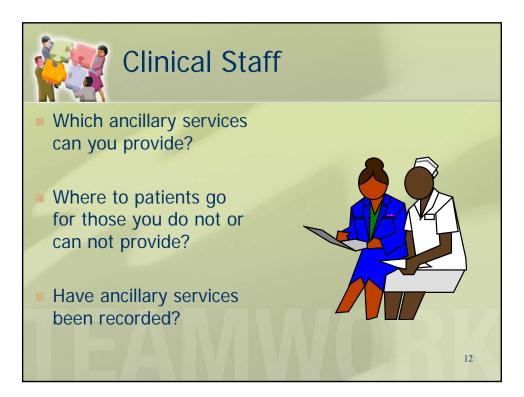


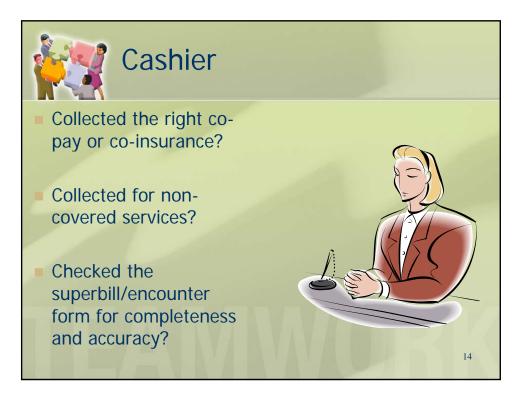


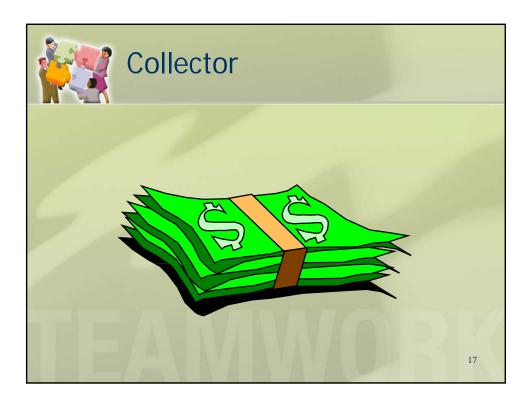


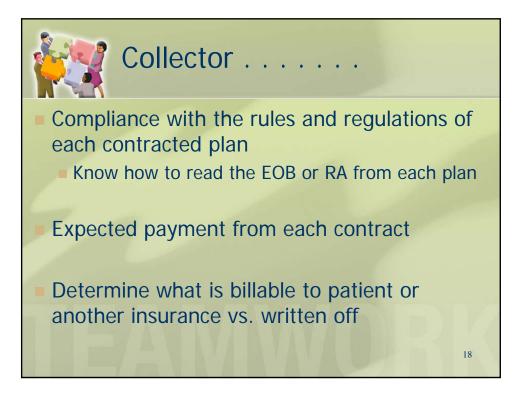


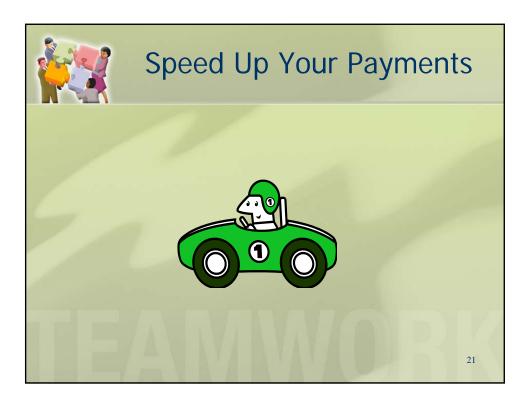

I have no relevant relationships/affiliations to any proprietary entity producing healthcare goods or services.

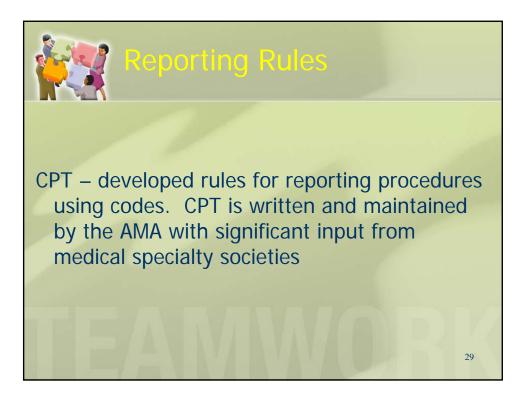




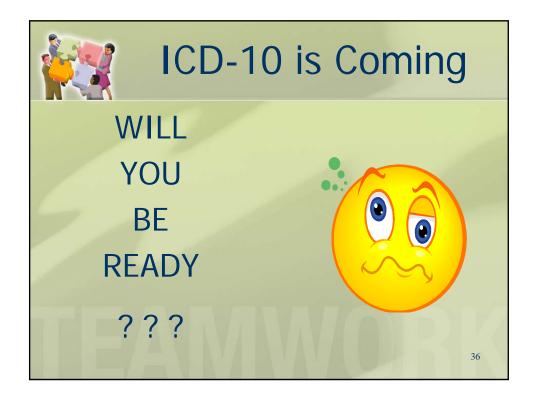


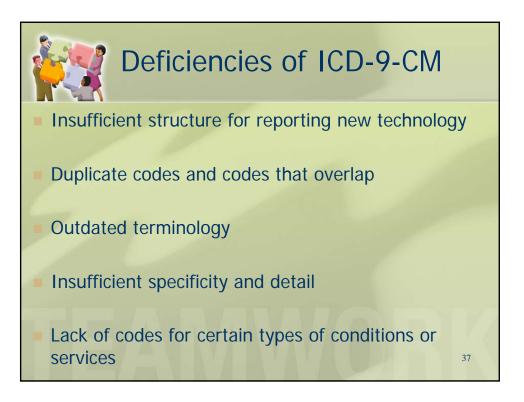


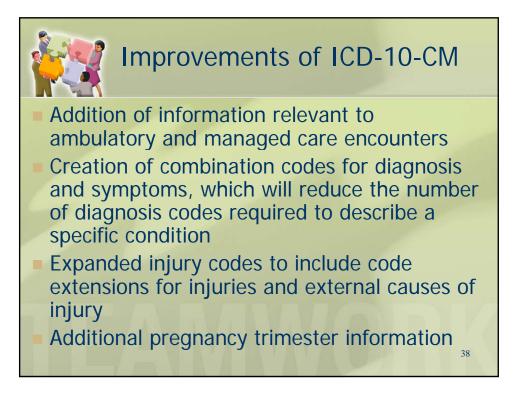


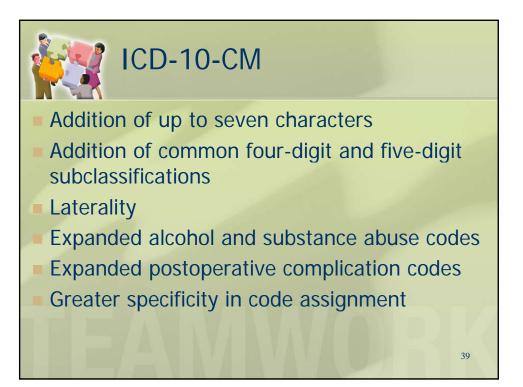


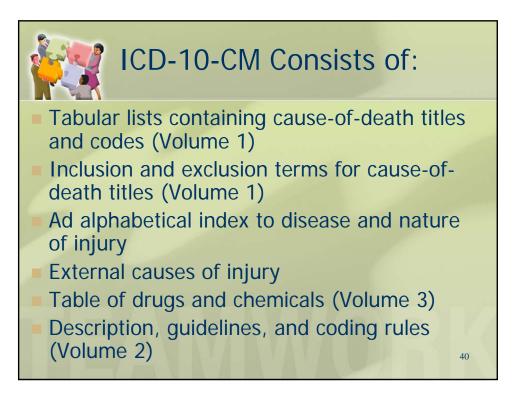


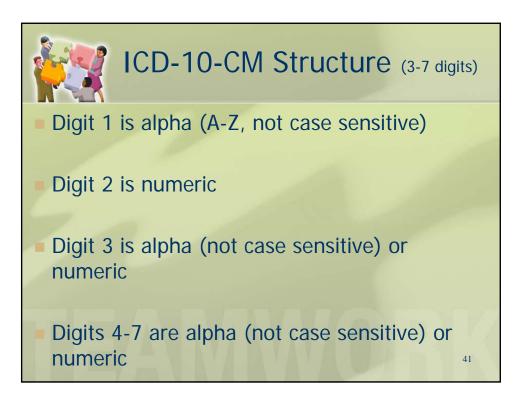


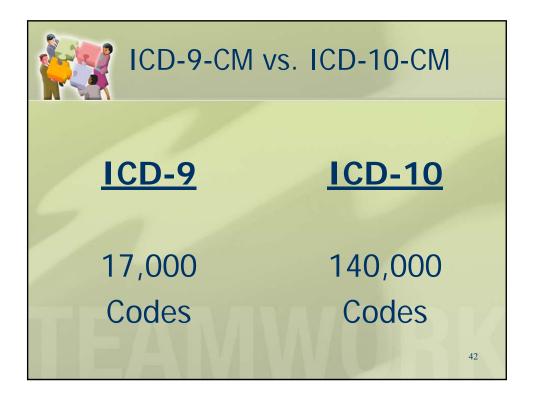


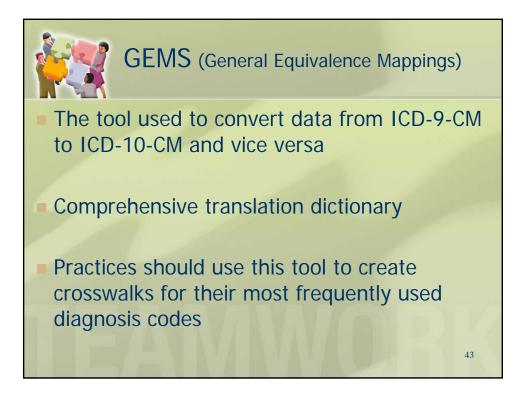


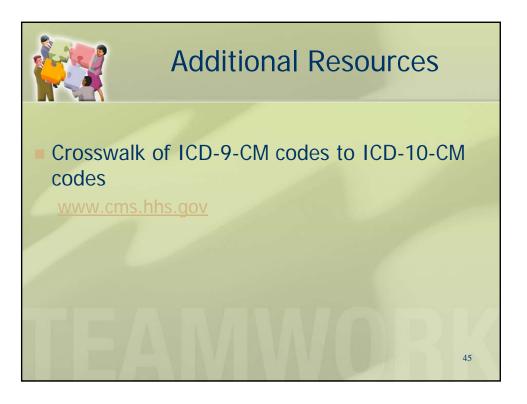












WEDNESDAY, OCTOBER 27, 2010

Moderator – Margaret Orcutt Tuddenham, DO, FACEP, FACOP

8:00 am – 9:00 am	Craniosacral Interventions in Pediatrics Susan Cislo, DO
9:00 am – 10:00 am	Craniosacral Interventions in Pediatrics - Workshop Susan Cislo, DO
10:00 am – 10:30 am	Break
10:30 am – 11:30 am	The Comprehensive Diagnosis and Treatment of Pediatric Migraine Marc DiSabella, DO
11:30 am – 12:30 pm	Pediatric Spells: Not All That Moves Is a Seizure Marc DiSabella, DO
12:30 pm – 2:00 pm	Lunch
2:00 pm – 3:00 pm	Clinical Management of Toxic Substance Exposure in Children Michael D. Reed, PharmD, FCCP, FCP
3:00 pm – 4:00 pm	Pediatric Arrhythmia - the Good, the Bad and the Ugly Alok Bose, MD
4:00 pm - 5:00 pm	Chest Pain and Syncope - When to Worry Alok Bose, MD
6:00 pm – 8:00 pm	AOA Dinner Seminar (Must sign in for extra CME)

WEDNESDAY, OCTOBER 27, 2010

Moderator - Margaret Orcutt Tuddenham, DO, FACEP, FACOP

8:00 am - 9:00 am

Craniosacral Interventions in Pediatrics

Susan Cislo, DO

Objective: TBA

WEDNESDAY, OCTOBER 27, 2010

Moderator - Margaret Orcutt Tuddenham, DO, FACEP, FACOP

9:00 am - 10:00 am

Craniosacral Interventions in Pediatrics Workshop

Susan Cislo, DO

Objective: TBA

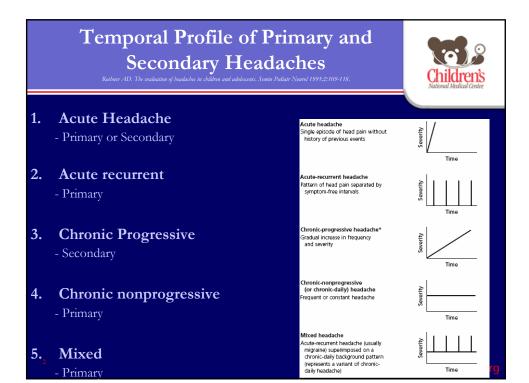
WEDNESDAY, OCTOBER 27, 2010

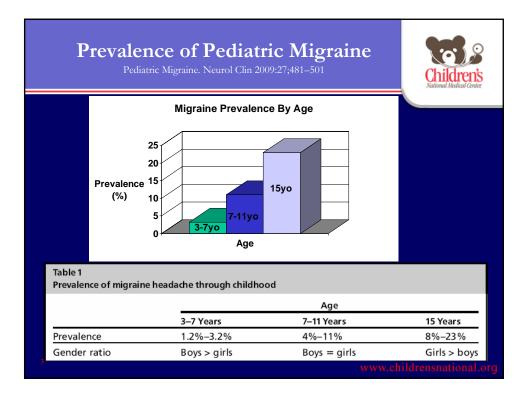
Moderator - Margaret Orcutt Tuddenham, DO, FACEP, FACOP

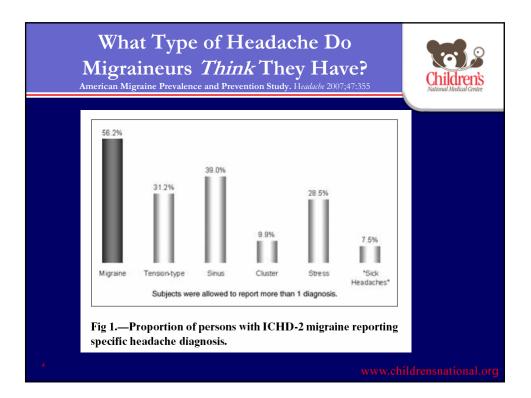
10:30 am - 11:30 am

The Comprehensive Diagnosis and Treatment of Pediatric Migraine

Marc DiSabella, DO


Objective: Upon completion of this lecture, the participant will be able to differentiate between primary and secondary headaches, discuss the epidemiology of migraine, discuss appropriate work up for patients presenting with headache, present current acute therapies for migraine in the outpatient setting, present current prophylactic therapies for migraine, and discuss alternative therapies for migraine.


The Comprehensive Diagnosis and Treatment of Migraine in Children



Marc DiSabella, DO Assistant Professor, Pediatric Neurology Associate Fellowship Program Director Children's National Medical Center

• Recommendations for Neuroimaging by AAN:

- 1) Headache of less than 1-month duration
- 2) Absence of family history of migraine
- 3) Abnormal neurologic findings on examination
- 4) Gait abnormalities
- 5) Occurrence of seizures

Abortive Treatment In Children Lewis. Pediatric Migraine. Neurol Clin 2009:27;481–501

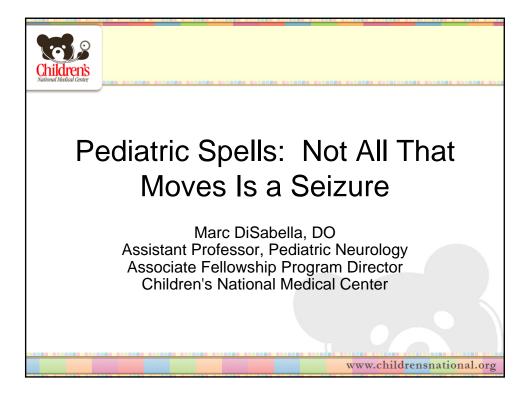
Children's	
National Medical Center	

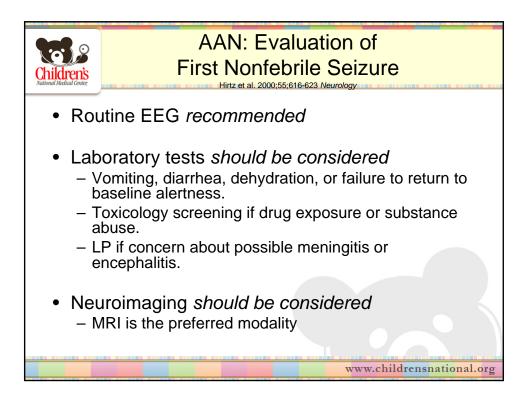
Drug	Class	Study Design	n	Age (Years)	Primary End Point	Efficacy	Placebo Response	Clinical Impression of Effect ^a	Adverse Effects	Reference
NSAIDs and nonopiate	analgesio	s								
Ibuprofen	П	DBPC	88	4–16	HA response	68%	37%	+++	Infrequent	45
	11	DBPC	84	6-12	HA response	76%	53%	+++	Infrequent	46
	11	DBPCCO	32	10-17	HA relief	69%	28%	+++		63
Acetaminophen	П	DBPC	88	4–16	HA response	54%	37%	++	Infrequent	45
Triptans (serotonin _{1B/1D}	receptor	agonists)								
Nasal spray	П	OL	58	4-11	HA relief	78%	_	++	Occasional to	64
Sumatriptan	111	DBPC	14	6-10	HA response	86%	43%	+++	frequent	41
Zolmitriptan	1	DBPC	510	12-17	2-hour HA response	63%-66%	53%	+++		39
	1	SB-DBPC	171	12-17	1-hour HA response	58%	43%	+++		42
Oral triptans										
Naratriptan	1	DBPC	300	12-17	4-hour HA relief	64%-72%	65%	0	Occasional	65
Rizatriptan	1	DBPC	296	12-17	2-hour pain relief	66%	56%	++	Occasional	66
	1	DBPC	96	6–17	2-hour HA relief	74%	36%			43
Sumatriptan	1	DBPC	302	12-17	2-hour pain relief	NA	NA	0	Occasional	68
Sumatriptan	П	DBPCCO	23	8-16	2 hour >50% decrease	34%	21%	0	Occasional	67
Zolmitriptan	IV	OL	38	12-17	HA improvement	88%	_	+	Occasional	69
	11	DBPCCO	32	11-17	2-hour pain relief	62%	28%	++		63
	1	DBPC	850	12-17	2-hour HA response	53%-57%	58%	0		70
Eletriptan	Ш	DBPC	267	12-17	2-hour HA response	57%	57%	0	Occasional	71
Almotriptan	IV	OL	15	11-17	HA reduction	85%	_	+	Occasional	72
·	1	DBPC	866	12-17	2-hour pain relief	67%	55%	++		44
Sumatriptan	IV	OL	17	6-16	HA response	64%	_	+	Occasional	73
Subcutaneous	IV	OL	50	6-18	HA response	78%	_	+	Frequent 80%	74

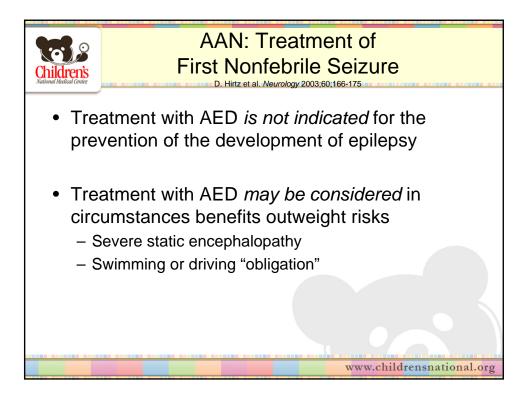
Pro	p	~						ric N 009:27;481–5	U	aine	Children
											National medical Cer
Table 3 Summary of evidence	for the	preventive then	apies f	for migraine	in children and ad	iolescents					
Drug	Class	Study Design		Age (Years)	Primary End Point	Effkary	Placebo Response	Clinical Impression of Effect*	Adverse Effects	Reference	
Antiepileptics			_								
Divalproex sodium/ sodium valproate	IV	or	42	7-16	HA/month	81%	-	+	Occasional to frequent	55	
	N	OL .	10	9-17	HA/month	83%	-	+		75 75	
	N	OL.	23	7-17	HA/month	65%> 50% reduction		+		~	
Gabapentin	N	Retrospect OL	18	6-17	HA freq/month			**	Occasional to frequent	"	
Topiramate		DBPC	44	9-17	HA/month	75%	38%	++	Occasional to	59	
	ï	DBPC		12-17	HA/month	54%-67%	42%	***	frequent	52	
	1	DBPC	85	12-17	HA/month	76%	45%	+++		94	
Levetiracetam	N	OL OL	20	6-17	HA/month HA/month	90% 67%	-	+	Occasional to	56 57	
Zonisamide	IV IV	oL OL	19		HA/month HA/month	75%	_	+	frequent Occasional	54	
Antidepressants		<u>w</u>	14	MICON 12	Tukinge.o.	73.4		+	OCCODE THE		
Trazodone	н	DBPC	35	7-18	HA freq	45%	40%	ô	Occasional to frequent	28	
Pizotifen	н	DBPCCO	47	7-14	HA/month	15%	16%	0	Occasional to frequent	эн	
Tricyclic antidepressa	ints										
Amitriptyline	IV.	OL.	192	9-15	HA freq/month	84%		++	Occasional to	79	
	IV.	ÓL.	73	3-18	HA freq/month	89%		++	frequent	80	
Antihistamines											
Cyproheptadine	"	DBPC Retrospective		17-53 3-18	% improve HA/month	75%	-	**	Occasional to frequent	81	
Calcium channel blo		Retrospective	30	3-18	Hamonth	6279		**	frequent	-	
Flunarezine	III	DBPC	42	7-14	>50% improve	76%	19.%	***	Occasional	10	
- Handreet me	-	DBPCCO		5-11	HAmonth	67%	33%	***	OCCUPICING 1		
Nimodipine		DBPCCO	37	7-18	HA/month	15%	16%	0	Occasional	92	
Antihypertensive age	ents										
Propranolol		DBPC		3-12	HA freq	58%	55%	0	Occasional to	M 85	
	÷ .	DBCO DBPC	28 28	7-16 6-12	HA freq HA freq	71% NS	10.% NS	**	frequent		
Timolol	÷	DBPCCO	19	6-12	HA meg HA/month	38%	40%	0	Occasional		
Conidine	÷	DBPCCO		6-13 7-14	HA/6 weeks	3876 NS	40.7% NS	0	Occasional to		
Gonome	÷ .	DBPC		<15	HA/month	40%	65 %	ŏ	frequent		
NSAIDs											
										»	

WEDNESDAY, OCTOBER 27, 2010

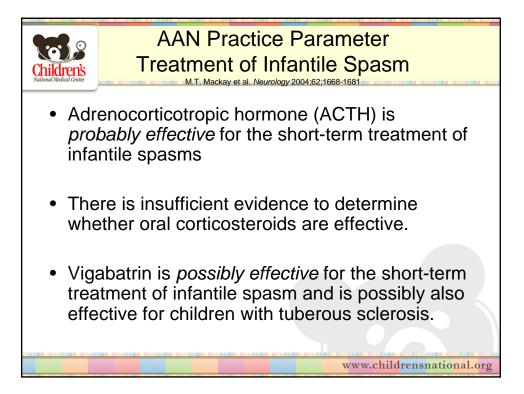
Moderator - Margaret Orcutt Tuddenham, DO, FACEP, FACOP

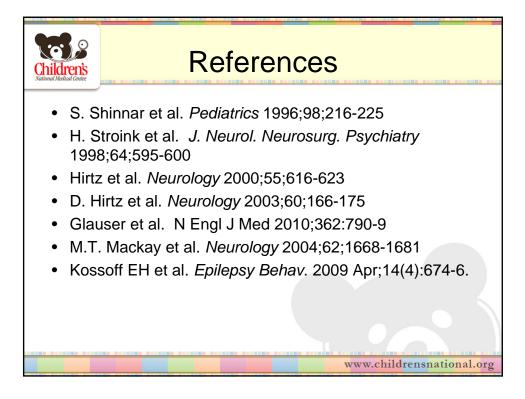

11:30 am - 12:30 pm


Pediatric Spells: Not All That Moves Is a Seizure


Marc DiSabella, DO

Objective: Upon completion of this lecture, the participant will be able to identify the key clinical features in distinguishing between common spells in pediatric patients including tics, stereotypies, shuddering attacks, various types of seizures, breath holding spells, syncope, and non-epileptic spells, discuss the appropriate diagnostic work up for patients presenting with spells, review.


Current guidelines will be given for treatment of tics, stereotypes, shuddering attacks, seizures, breath holding spells, syncope, and non-epileptic spells, and discuss the prognosis in tics, Tourette Syndrome, stereotypes, shuddering attacks, seizures, breath holding spells, syncope, and non-epileptic spells.



Differentiation of Pediatric Spells Based on History											
	BEFORE	DURING	AFTER								
Tic	Inciting event: Stress, concentration Aura: Sensory or premonitory urge	Event: Simple brief patterned movement or noise Suppressible: Temporarily	Brief relaxation No change in level of consciousness								
Stereotypy	Inciting event: Stress, excitement Aura: None	Event: Complex stereotypic movements Suppressible: Rarely as infant/child, more likely as pre-adolescent	No change in level of consciousness								
Syncope	Inciting event: Stress, heat, emotion Aura: Diaphoresis, dizzy/vertigo, tachycardia, tunnel vision	Event: Loss of muscle tone and consciousness, eyes closed during event, may have brief stiffening or jerking Suppressible: No	Rapid return to baseline No confusion except event itself								
Seizure	Inciting event: rare Aura: Partial onset may have abnormal smell, taste, sensory disturbance, motor twitching	Event: Stereotyped involuntary cortical activity with associated movements/sensory disturbance, eye opening Suppressible: No	Confusion, lethargy, weakness (Todd's), headache None if absence seizure, frontal lobe								
Breath Holding	Inciting event: Stress, excitement Aura: crying, tantrum, "silent" scream	Event: Loss of tone, cyanotic or pallor, may have brief stiffening or jerking Suppressible: No	Rapid return to baseline No confusion except event itself Irritability								
Shuddering	Inciting event: None Aura: None	Event: Brief trembling of whole body Suppressible: No	No change in level of consciousness								
www.childrensnational.org											

WEDNESDAY, OCTOBER 27, 2010

Moderator - Margaret Orcutt Tuddenham, DO, FACEP, FACOP

2:30 pm - 3:00 pm

Clinical Management of Toxic Substance Exposure in Children

Michael D. Reed, PharmD, FCCP, FCP

Objective: Upon completion of this lecture, the participant will understand the epidemiology of poisoning exposures in children, able to describe a rational approach to the diagnosis of a patient who has been exposed to an unknown poison, define the clinical utility and contraindications to the use of oral activated charcoal, understand the clinical utility and limitations of currently available antidotes, and appreciate the initial steps to decontamination in the event of a biologic or chemical event.

WEDNESDAY, OCTOBER 27, 2010

Moderator - Margaret Orcutt Tuddenham, DO, FACEP, FACOP

2:30 pm - 3:00 pm

Pediatric Arrhythmia - the Good, the Bad and the Ugly

Alok Bose, MD

Objective: Upon completion of this lecture, the participant will be able to identify common types of neonatal arrhythmia, describe different types of SVT and their management, and review which types of arrhythmia merit exclusion from sports.

WEDNESDAY, OCTOBER 27, 2010

Moderator - Margaret Orcutt Tuddenham, DO, FACEP, FACOP

2:30 pm - 3:00 pm

Chest Pain and Syncope - When to Worry

Alok Bose, MD

Objective: Upon completion of this lecture, the participant will be able to identify the common causes of chest pain in the pediatric patient, describe syncope as it relates to congenital heart conditions, and review the common presenting features of vasovagal syncope.

AOA/ACOP PEDIATRIC TRACK ABSTRACT LISTING

Enzyme Replacement Therapy for Pompe Disease

Authors: Christina Navarro DO (1), Rohit Talwar MD (2), Laura Nimkoff MD (3) Department of Pediatrics (1) Division of Pediatric Cardiology (2) Division of Pediatric Critical Care (3) Good Samaritan Hospital, West Islip NY 11795

Examining BMI Among a Score One Population: From Health Screening to Physician Visit

Author(s): Kaitlin O'Connor, MA; Julie Sahrmann, BA; Annette Campbell, RN; Richard Magie, DO Kansas City University of Medicine and Biosciences, Kansas City, MO

The Tropics Come to Long Island

Author(s): Wayne Chen, DO; Howard Balbi, MD Good Samaritan Hospital Medical Center, West Islip Winthrop University Hospital, Mineola, NY Title: Enzyme Replacement Therapy for Pompe Disease

Authors: Christina Navarro D.O. (1), Rohit Talwar M.D. (2), Laura Nimkoff M.D. (3) Department of Pediatrics (1) Division of Pediatric Cardiology (2) Division of Pediatric Critical Care (3)

Affiliations: Good Samaritan Hospital, West Islip NY 11795

Abstract Body:

Introduction: Pompe disease is a rare autosomal recessive disorder caused by mutations in the gene encoding lysosomal alpha-1,4-glucosidase. This leads to accumulation of glycogen in lysosomes and cytoplasm which results in tissue destruction. If the patient is not properly treated with enzyme replacement, death usually occurs within the first two years of life from cardiac insufficiency.

Case Description:

Infant was born at Good Samaritan Hospital full term via normal spontaneous vaginal delivery. At six hours of life she was transferred to the Neonatal ICU for respiratory distress and placed on nasal CPAP. Initial x-ray demonstrated prominent cardiac size. An echocardiogram was then performed that revealed biventricular hypertrophy left greater than right. She was eventually weaned off oxygen and discharged. At three months of age during a cardiology follow up exam, the patient was found to be tachycardic and tachypneic. Physical exam also revealed generalized hypotonia, enlarged tongue and palpable liver. Echocardiogram demonstrated dilated and hypertrophic left and right ventricles. The patient was admitted to GSH Pediatric ICU, and started on a Milrinone for management of congestive heart failure. Due to high clinical suspicion for metabolic disorder, a muscle biopsy and genetic testing were performed. She was positive for cross reacting immunologic material (CRIM) Pompe Disease. The patient continues to receive monitored Myozyme IV infusion in the GSH Pediatric ICU every two weeks.

Discussion: Pompe Disease is a metabolic disorder characterized by lysosomal acid maltase deficiency. Symptoms of Pompe disease include cardiomyopathy, hypotonia, tongue enlargement and hepatomegaly. With the development of this new enzyme replacement within the past three years, patients have a significant improvement in prognosis. Thus, Pompe Disease and other inborn errors of metabolism should be in the differential diagnosis for infants with congestive heart failure.

Title: Examining BMI Among a Score 1 Population: From Health Screening to Physician Visit

Author(s): Kaitlin O'Connor, MA; Julie Sahrmann, BA; Annette Campbell, RN; Richard Magie, DO

Affiliation(s): Kansas City University of Medicine and Biosciences, Kansas City, MO

Background: Childhood obesity is an epidemic in America that is markedly increased in ethnically diverse populations, particularly those in low-income areas. In order to address pediatric obesity and other concerns that plague the urban-core population, and in an effort to integrate public health outreach into medical education, Kansas City University of Medicine and Biosciences and *Score 1 for Health*® began a partnership in 1996. *Score 1* is a non-profit organization that provides health screenings for 13,000 children annually, making referrals to local pediatricians for those who are obese, hypertensive, diabetic, or suffering from other undiagnosed conditions. In addition to addressing the needs of the underserved, *Score 1* allows medical students to practice their physical exam skills and provides a longitudinal database useful for research. This database can be used to perform a retrospective chart review of those children referred to local clinics in order to determine how providers address and treat obesity. Despite its prevalence, we suspect that the recommended treatment protocol for obesity in childhood is seldom followed and that the therapies that are implemented are inconsistent.

Objective: The objective of this study is to determine how well primary care providers identified patients with Body Mass Indices (BMIs) at or above the 95th percentile, as well as which therapies clinicians most often implemented. We also wished to assess which health conditions are typically associated with obesity that may take precedence over BMI counseling during the patient's visit to the clinic, and we hoped to investigate barriers to treatment from the provider's perspective.

Materials/Methods: Using BMI calculations from the *Score 1* database through the years of 2007 to 2010, a study population of children was identified who had BMIs at or above the 95th percentile for at least 2 years. Patient charts from the study population were matched in area primary care clinics and data was collected by retrospective chart review using Microsoft Excel. Captured variables included positive identification of an elevated BMI, specific therapies used in treatment, and comorbid conditions mentioned in the chart. Clinicians also completed a survey and brief interview to address barriers to and attitudes towards treatment.

Results: There were 39,568 BMI measurements done by *Score 1* from 2007-2010. Of those, 1,944 children were identified who fit the study population criteria. At two local clinics, 157 charts were identified. Of those, 57.1% (90) had no mention of elevated BMI or any treatment initiated on any visit. Nutritional counseling was the most commonly implemented strategy for weight management and was provided in some form to 31% (49) of children. Physicians were more likely to document a weight problem on a physical exam (90%) visit rather than a visit for acute illness. Weight problems were more likely to be addressed with repeated visits. Only 18.1% (68) of children who visited the clinic 5 or fewer times received some BMI intervention whereas 60% (25) of children with 15 or more clinic visits received some BMI therapy. Asthma was the most common comorbidity in 11.4% (58) of children.

Conclusions: Obesity in childhood is a complex problem with contributions from the social and economic environments. Though we have come a long way in slowing the growth of this epidemic, many clinicians are not effectively recognizing or treating this problem. There is little consistency among pediatricians as to which therapies are most useful and disagreement as to which barriers to treatment are most prevalent. More research needs to be done on how clinicians can realistically and successfully incorporate effective management of pediatric obesity into the care of each patient.

Title: The Tropics Come to Long Island

Author(s): Wayne Chen, DO; Howard Balbi, MD Affiliation(s): Good Samaritan Hospital Medical Center, West Islip; Winthrop University Hospital, Mineola, NY

Introduction:

Pyomyositis is a bacterial infection of the skeletal muscles often resulting in abscess formation and severe complications with delayed treatment. Pyomyositis is more common in healthy individuals in tropical regions and typically affects the large muscle groups. In temperate regions it is usually found in patients with comorbidities like diabetes, IV drug abuse, and immunodeficiency disorders.

Case Description:

A 13-year-old male with history of asthma and no recent travel, presented to GSH emergency department complaining of bilateral anterior thigh pain, fever and URI symptoms for several days. Physical exam at admission showed a febrile, male with thighs that were warm, tender to palpation, and painful with movement. A small pustular lesion was noted on his ankle. Lesion and blood cultures were obtained. The patient was then admitted for further evaluation and management. During the patient's stay, labs showed normal CPKs and elevated ESRs. CRPs were elevated initially, but decreased with clinical improvement. Based on the physical, normal CPK, and elevated CPR, pyomyositis was suspected and antibiotics were started. MRI showed extensive myositis and fasciitis on the thigh and pelvis, with bilateral synovitis of the hips. Follow-up MRI showed an abscess on the right obturator internus muscle which was drained by orthopedics. Blood and wound cultures grew *Staphylococcus aureus*. The patient improved clinically. A PICC line was placed to complete six weeks of outpatient antibiotic therapy. After three months, he has since returned to regular activity.

Conclusion:

This case demonstrates a classic case of pyomyositis in a region where it is uncommonly seen in healthy individuals. Such a presentation could easily have been misdiagnosed as viral myositis leading to delayed treatment if pyomyositis was not considered. Physicians must remain aware diseases are not obligated to match its demographic profile and be confident with their diagnosis based on physical findings.

April 7-10, 2011

Fairmont Pittsburgh Pittsburgh, PA

www.acopeds.org

ACOP Headquarters 2209 Dickens Road • Richmond, VA 23230-2005 • (804) 565-6333 • Fax (804) 282-0090